Medical and Hospital News  
SPACE MEDICINE
Flexible organic electronics mimic biological mechanosensory nerves
by Staff Writers
Seoul, South Korea (SPX) Jun 05, 2018

Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption. The researchers said organic devices are advantageous because their functional properties can be tuned, they can be printed on a large area at a low cost, and they are flexible like soft biological systems. (illustration only)

Researchers at Seoul National University and Stanford University developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille characters.

Compared to conventional digital computers, biological nervous system is powerful for real-world problems, such as visual image processing, voice recognition, tactile sensing, and movement control. This inspired scientists and engineers to work on neuromorphic computing, bioinspired sensors, robot control, and prosthetics.

The previous approaches involved implementations at the software level on conventional digital computers and circuit designs using classical silicon devices which have shown critical issues related to power consumption, cost, and multifunction.

The research describes artificial mechanosensory nerves based on flexible organic devices to emulate biological mechanosensory nerves. "The recently found mechanisms of information processing in biological mechanosensory nerves were adopted in our artificial system," said Zhenan Bao at Stanford University.

The artificial mechanosensory nerves are composed of three essential components: mechanoreceptors (resistive pressure sensors), neurons (organic ring oscillators), and synapses (organic electrochemical transistors). The pressure information from artificial mechanoreceptors can be converted to action potentials through artificial neurons. Multiple action potentials can be integrated into an artificial synapse to actuate biological muscles and recognize braille characters.

Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption. The researchers said organic devices are advantageous because their functional properties can be tuned, they can be printed on a large area at a low cost, and they are flexible like soft biological systems.

Wentao Xu, a researcher at Seoul National University, and Yeongin Kim and Alex Chortos, graduate students at Stanford University, used their artificial mechanosensory nerves to detect large-scale textures and object movements and distinguish braille characters. They also connected the artificial mechanosensory nerves to motor nerves in a detached insect leg and control muscles. Professor Tae-Woo Lee, a Professor at Seoul National University said, "Our artificial mechanosensory nerves can be used for bioinspired robots and prosthetics compatible with and comfortable for humans." Lee said, "The development of human-like robots and prosthetics that help people with neurological disabilities can benefit from our work."


Related Links
Seoul National University
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Now, you can hold a copy of your brain in the palm of your hand
Boston MA (SPX) May 31, 2018
What if you could hold a physical model of your own brain in your hands, accurate down to its every unique fold? That's just a normal part of life for Steven Keating, Ph.D., who had a baseball-sized tumor removed from his brain at age 26 while he was a graduate student in the MIT Media Lab's Mediated Matter group. Curious to see what his brain actually looked like before the tumor was removed, and with the goal of better understanding his diagnosis and treatment options, Keating collected his medi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Peace needs at least 15 years: Colombian president

Sentinel-1 warns of refugee island flood risk

Seismometer readings could offer debris flow early warning

China floods to hit US economy: Climate effects through trade chains

SPACE MEDICINE
Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

China to launch two BeiDou-2 backup satellites

China to launch another 11 BeiDou-3 satellites in 2018

SPACE MEDICINE
Study finds two ancient populations that diverged later 'reconverged' in the Americas

The making of a human population uncovered through ancient Icelandic genomes

How did human brains get so large?

How to build a brain: discovery answers evolutionary mystery

SPACE MEDICINE
Ocean-migrating trout adapt to freshwater environment in 120 years

Massive beach clean-up for Hong Kong sea turtles

New technique shows what microbes eat

Galapagos iguanas transferred due to overpopulation

SPACE MEDICINE
Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

Could we predict the next Ebola outbreak by tracking the migratory patterns of bats?

Deadly malaria's evolution revealed

SPACE MEDICINE
Costly date: 64.89 yuan forbidden on Tiananmen June 4 anniversary

Hong Kong independence duo given jail term for parliament chaos

With Cambodia's free press under fire, 'China model' makes inroads

Families of Tiananmen victims urge China's Xi to 're-evaluate' crackdown

SPACE MEDICINE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

SPACE MEDICINE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.