Medical and Hospital News  
CHIP TECH
Forging a quantum leap in quantum communication
by Staff Writers
Tel Aviv, Israel (SPX) Mar 05, 2018

illustration only

Quantum communication, which ensures absolute data security, is one of the most advanced branches of the "second quantum revolution". In quantum communication, the participating parties can detect any attempt at eavesdropping by resorting to the fundamental principle of quantum mechanics - a measurement affects the measured quantity. Thus, the mere existence of an eavesdropper can be detected by identifying the traces that his measurements of the communication channel leave behind.

The major drawback of quantum communication today is the slow speed of data transfer, which is limited by the speed at which the parties can perform quantum measurements.

Researchers at Bar-Ilan University have devised a method that overcomes this "speed limit", and enables an increase in the rate of data transfer by more than 5 orders of magnitude! Their findings were published in the journal Nature Communications.

Homodyne detection is a cornerstone of quantum optics, acting as a fundamental tool for processing quantum information. However, the standard homodyne method suffers from a strong bandwidth limitation. While quantum optical phenomena, exploited for quantum communication, can easily span a bandwidth of many THz, the standard processing methods of this information are inherently limited to the electronically accessible MHz-to-GHz range, leaving a dramatic gap between the relevant optical phenomena that is used for carrying the quantum information, and the capability to measure it. Thus, the rate at which quantum information can be processed is strongly limited.

In their work, the researchers replace the electrical nonlinearity that serves as the heart of homodyne detection, which transforms the optical quantum information into a classical electrical signal, with a direct optical nonlinearity, transforming the quantum information into a classical optical signal. Thus, the output signal of the measurement remains in the optical regime, and preserves the enormous bandwidth optical phenomena offers.

"We offer a direct optical measurement that conserves the information bandwidth, instead of an electrical measurement that compromises the bandwidth of the quantum optical information," says Dr. Yaakov Shaked, who conducted the research during his Ph.D. studies in the lab of Prof. Avi Pe'er. To demonstrate this idea, the researchers perform a simultaneous measurement of an ultra-broadband quantum optical state, spanning 55THz, presenting non-classical behavior across the entire spectrum. Such a measurement, using standard method, would be practically impossible.

The research was accomplished through a collaboration between the Quantum Optics Labs of Prof. Avi Pe'er and Prof. Michael Rosenbluh, together with Yoad Michael, Dr. Rafi Z. Vered and Leon Bello at the Department of Physics and Institute for Nanotechnology and Advanced Materials at Bar-Ilan University.

This new form of quantum measurement is relevant also to other branches of the "second quantum revolution", such as quantum computing with super powers, quantum sensing with super sensitivity, and quantum imaging with super resolution.

Research paper


Related Links
Bar-Ilan University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
New technology standard could shape the future of electronics design
Southampton UK (SPX) Feb 28, 2018
Scientists at the University of Southampton have discovered a way of enhancing the capabilities of an emerging nanotechnology that could open the door to a new generation of electronics. In a study published in the journal Scientific Reports, researchers show how they have pushed the memristor - a simpler and smaller alternative to the transistor, with the capability of altering its resistance and storing multiple memory states - to a new level of performance after experimenting with its component ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
At the UN, a diplomatic dance decides the fate of nations

Venezuela's woes spread to zoos as animals feed on each other

Mobile phones help transform disaster relief

Baby born on British roadside after snow blocks hospital dash

CHIP TECH
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

CHIP TECH
Scientists find world's oldest figural tattoos on Egyptian mummies

Seeing the brain's electrical activity

Buried at the stake: Underwater burial site yields skulls on poles

Chimps and bonobos don't need a translator

CHIP TECH
Birds are essential to the dispersion of rare wild chili pepper seeds

Scientists discover strange new water bear species

Mexican troops partner with activists to save vaquita porpoise

The giant wave that marks the beginning of the end - the neurobiology of dying

CHIP TECH
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

CHIP TECH
Tibetans greet new year with giant Buddhas, dancing and lamb carcasses

China's rubber-stamp legislature to give Xi free rein

China's 'super rich' legislators get richer

Very rare Qing Dynasty bowl seen topping $25 mn at auction

CHIP TECH
India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

Thai navy says 11 million pill haul a record from Laos

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.