Medical and Hospital News  
BIO FUEL
Fuel from waste wood
by Staff Writers
Munich, Germany (SPX) Mar 30, 2022

According to the latest assessment report from the Intergovernmental Panel on Climate Change, a considerable reduction in CO2 emissions is required to limit the consequences of climate change. Producing fuel from renewable sources such as waste wood and straw or renewable electricity would be one way to reduce carbon emissions from the area of transportation. This is an area which is being addressed by researchers at the Technical University of Munich (TUM).

Ethanol is usually produced through the fermentation of sugars from starchy raw materials such as corn, or from lignocellulosic biomass, such as wood or straw. It is an established fuel that decarbonizes the transportation sector and can be a building block to reduce emissions of CO2 over the long term.

In collaboration with the Lappeenranta-Lahti University of Technology (LUT) in Finland, researchers at the Straubing Campus for Biotechnology and Sustainability of the Technical University of Munich (TUM) have developed a new process for the production of ethanol.

In this context, offcut materials from the area of forestry are used together with hydrogen. The hydrogen is produced by separating water into hydrogen and oxygen with the use of electricity - in other words, with the use of water electrolysis. In the future, this will allow the excess electricity to be used for the production of ethanol.

"The overall process mainly consists of technically mature sub-processes. However, the composition of the process steps and the final step - the hydrogenation of acetic acid to produce ethanol - are new," explains Daniel Kluh, a doctoral student at the Professorship of Renewable Energy Systems at the TUM Straubing Campus.

The costs of ethanol with the new production method are competitive

The researchers have also assessed the economic feasibility. "The prices we have calculated are based on assumptions for raw materials and energy. We are not using any current market prices. The calculation basis of our prices for the components in the chemical system is the year 2020," explains Kluh.

The lowest cost for ethanol in the modeling was 0.65 euros per liter, with biomass costs of 20 euros per megawatt hour, electricity costs of 45 euros per megawatt hour, and a production volume of approximately 42 kilotons of ethanol per year.

"With the current lignocellulosic ethanol production options, the costs are therefore competitive. The price of ethanol is very sensitive to the costs of electricity, and fluctuates between 0.56 and 0.74 euros per liter," explains Assistant Professor Kristian Melin of LUT in Finland.

One reason for the high profitability is that the ethanol yield is much higher compared to traditional fermentation based bioethanol process from straw or wood. This process produces 1350 to 1410 liters of ethanol, compared to only 200 to 300 liters of ethanol for the traditional process per dry ton of biomass.

Where production facilities could be located
Part of the study is focusing on the variable geographical positioning of production sites, which would enable a degree of independence from suppliers to be achieved. "Countries with a high potential for waste wood and green electricity, such as Finland or even Canada, can serve as producers of acetic acid, which, in the final process step, is hydrogenated to produce ethanol," explains Prof. Tuomas Koiranen of LUT.

"In the future, countries like Germany will hopefully have a green electricity mix and will be able to carry out the hydrogenation of acetic acid to ethanol at a domestic level. However, Germany does not have the waste wood potential for a large-scale biomass gasification which is required for the synthesis of acetic acid," adds Prof. Matthias Gaderer, Professor of Renewable Energy Systems at TUM.

The technology needs to mature further
With the use of green electricity to power the electrolysis, this process can produce a low CO2 fuel that has a greenhouse gas reduction potential of 75 percent in comparison with a fossil fuel such as gasoline. Ethanol is established as a fuel.

It can be used in the form of both E-10 gasoline, with 10 percent ethanol in the fuel mixture for regular automobiles, as is already the case, or as ED95, which is 95 percent ethanol, as a diesel substitute for heavy goods transportation.

With their process simulation, the scientists have demonstrated the competitiveness of the process. "To commercialize this product, it is necessary to further improve the degree of technological maturity. The next steps could entail further catalyst developments, a reactor design and the construction and operation of a pilot system," says Prof. Gaderer.

Research Report: "Techno-Economic Evaluation of Novel Hybrid Biomass and Electricity-Based Ethanol Fuel Production"


Related Links
Technical University of Munich
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Breaking down plastic into its constituent parts
Zurich, Switzerland (SPX) Mar 29, 2022
The chemical industry has a long tradition of producing polymers. This involves turning small molecular building blocks into long chains of molecules that bond together. Polymers are the basis of all kinds of everyday plastics, such as PET and polyurethane. However, while the formation of polymers is well established and well researched, scientists have given little attention to how polymer chains are broken down (a process called depolymerisation) to recover their individual building blocks - mon ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Russians leave Chernobyl with Ukrainian troops as hostages: Kyiv

Russians start to withdraw from Chernobyl: US

Russia occupies Chernobyl staff town, Kyiv says

New fires in Chernobyl exclusion zone: Ukraine deputy PM

BIO FUEL
Identifying RF and GPS interferences for military applications with satellite data

Turn your phone into a space monitoring tool

Ukraine war disrupts GPS in Finland, Mediterranean

China's BeiDou enters new phase of stable services, rapid development

BIO FUEL
New predictive model helps in identify ancient hunter-gatherer sites

Ancient campfires reveal a 50,000 year old grocer and pharmacy

Grains hints at origin of 7,000-year-old Swiss pile dwellings

Early humans kept old stone tools to preserve memory of their ancestors

BIO FUEL
Hundreds of new mammal species waiting to be found

Rare birth of Sumatran rhino brings hope for endangered species

Politics and pandemic weigh on talks to save nature

Saving nature: Conserving 30% of the land, sea just the start

BIO FUEL
Tale of two cities as Shanghai goes into slow-motion lockdown

Shanghai won't lock down despite Covid spike: official

Half of Shanghai in lockdown to curb Covid-19 outbreak

Anxiety and empty shelves as Shanghai Covid-19 cases surge

BIO FUEL
Nine foreign judges to stay on Hong Kong's top court

Australian journalist faces China trial on state secrets charges

UK judges to withdraw from Hong Kong's top court

Two UK judges resign from Hong Kong's top court

BIO FUEL
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

BIO FUEL








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.