. Medical and Hospital News .




FARM NEWS
Getting to the Root of the Matter
By Jennifer Donovan for MTU News
Houghton MI (SPX) Jul 11, 2013


Victor Busov, left; Yordan Yordanov, center; and Hairong Wei, right, examine their experimental poplar trees.

Working to identify key genes in the root development of poplar trees, three Michigan Technological University scientists have come up with a new model for how genes interact and affect each other's function. They also identified a network of genes that cause poplar roots to grow well in low-nitrogen soil, making them ideal candidates for biofuel tree plantations on marginal lands.

When the researchers in Michigan Tech's School of Forest Resources and Environmental Science started looking at the question of how nitrogen-widely used as an agricultural fertilizer-affects root growth in plants, their goal was to find ways to produce plants that require less nitrogen.

"Contemporary nitrogen fertilization practices are not environmentally or economically smart," says Busov, who studies the functional genomics of plant development. "Only 30 percent is used by the plants. The rest goes into the ground water. It changes the soil and causes increases in algal blooms, greenhouse gases and insects like mosquitoes that carry disease."

The scientists wanted to grow more nitrogen-efficient plants, so less nitrogen could be used as fertilizer. But first they had to unlock the secret to the genetic mechanisms underlying plant root growth.

"Nobody knew the mechanisms of how low nitrogen affects plant roots," Busov explains.

They turned to the poplar for their studies because it is a major biofuel crop.

There are tens of thousands of genes in the poplar genome. The challenge-and it was a big one-was how to determine which genes are doing what, how they affect each other and how they work together to regulate root growth under low nitrogen conditions.

Wei, a molecular biologist, also has extensive knowledge of computer science, and he is adept at applying it to large biological data sets. He took on the task of untangling the interactions of more than 61,000 genes by searching for a "high hierarchical regulator," the "boss" gene.

In their laboratory at Michigan Tech, Busov and Yordanov planted poplar seedlings under normal nitrogen levels. Then they transplanted them to a medium that contained almost no nitrogen.

What happened? "Surprisingly, the roots got larger and longer," says Yordanov.

"We think that the roots were looking for nitrogen," Busov suggests. "But what is the genetic machinery behind this growth?"

The scientists did a series of experiments over time under the same experimental conditions, to identify the genes involved in the changes they observed. They found 9.198 genes that produced significantly different amounts or kinds of proteins at six different times. By performing genetic network analyses, they narrowed the field to a handful of key genes that appeared to control the majority of the 9,198 others.

Further analysis closed in on a gene called PtaNAC1. "When we tweak this gene, the entire network responds, and the roots grow 58 percent more than controls'," says Busov.

What Wei wound up with is a new model of how genes function together.

"Imagine a manufacturer," he says. "At the bottom of the hierarchy, you find the laborers. They answer to a foreman who reports to a manager, and so on until you get to the president. If you want multiple laborers to do a complicated job, you start with the president, who will pass the instructions down .

Busov likens the process to the functioning of a machine. "There is a master switch that turns on the engine," he says. "The engine activates other switches that make all the little cogs and gears in the machine do what they are supposed to do."

Wei's work with the genetic networks that cause root growth "gave us one of the big switches," says Busov.

Now that the scientists understand the poplar's genetic "engine," they can work to develop new varieties of plants that can thrive on marginal lands. "We want to grow poplars that are even more efficient in a low-nitrogen environment," says Yordanov.

There's a side benefit to growing plants that like low-nitrogen conditions too. They can suck some of the excess nitrogen from crop fertilization out of ground water. "That's good for the plants and good for nature," the researcher observes.

The research by Hairong Wei, Yordan Yordanov and Victor Busov was published by the international journal New Phytologist. The article is titled "Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks."

.


Related Links
Michigan Technological University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FARM NEWS
Contemplating the Brazilian dilemma: Abundant grain but inadequate storage
Urbana IL (SPX) Jul 11, 2013
Tropical climates that allow for year-round farming would seem to be a tremendous economic advantage, but for corn and soybean farmers in the Brazilian state of Mato Grosso it also poses a problem-an abundance of grain followed by about a 10 percent postharvest loss, partially due to a lack of storage. "There is a 34 percent undercapacity of soybean storage, and the situation is aggravated ... read more


FARM NEWS
Man who battled Fukushima disaster dies of cancer

Fukushima radioactive groundwater readings rocket

REACTing to a crisis

RESCUE Consortium Demonstrates Technologies for First Responders

FARM NEWS
GPS maker Garmin unveils heads-up traffic display for cars

India launches satellite for new navigation system

Beidou's second trial held in Yangtze Delta

The next batch of Galileo satellites

FARM NEWS
Did Neandertals have language?

How well can you see with your ears? Device offers new alternative to blind people

Ability of people to 'see' with their ears called impressive

Parts of ancient sphinx found in Israel

FARM NEWS
Research suggests Madagascar no longer an evolutionary hotspot

Birds outpace climate change to avoid extinction

Endangered small deer gives birth to tiny fawn

Kenya seizes three tonnes of ivory at port

FARM NEWS
China H7N9 bird flu toll up to 43: govt

Second door discovered in war against mosquito-borne diseases

H1N1 flu outbreak in northern Chile kills 11

HRW calls on Greece to repeal 'abusive' HIV regulation

FARM NEWS
Scepticism over corrupt China minister's punishment

Taiwan, New Zealand sign free trade deal

Weak China trade data add to economic growth fears

China police fire on Tibetans honouring Dalai Lama: groups

FARM NEWS
Mexican generals freed after cartel charges dropped

Mexicans turn to social media to report on drug war

Sydney customs officers ran drugs ring, report says

New Moldova P.M. Leanca says country remains on pro-EU course

FARM NEWS
Salesmen march against H.K. property cooling measures

China annual inflation picks up to 2.7%: govt

Outside View: U.S. jobs growth picks up but policy reforms needed

Walker's World: Euro crisis returns




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement