Medical and Hospital News  
STELLAR CHEMISTRY
Greenland Telescope opens new era of Arctic astronomy
by Staff Writers
Boston MA (SPX) Jun 01, 2018

A view of the 12-meter Greenland Telescope.

To study the most extreme objects in the Universe, astronomers sometimes have to go to some extreme places themselves. Over the past several months, a team of scientists has braved frigid temperatures to set up and observe with a new radio telescope in Greenland.

Taking advantage of excellent atmospheric conditions, the Greenland Telescope is designed to detect radio waves from stars, star-forming regions, galaxies and the vicinity of black holes. One of its primary goals is to take the first image of a supermassive black hole by joining the Event Horizon Telescope (EHT), a global array of radio dishes that are linked together.

The Greenland Telescope has recently achieved three important milestones, beginning with "first light" last December. Following this, the telescope was successfully synchronized with data from another radio telescope, and was then used in an observing run of the EHT in April 2018. With these achievements, scientists from the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) of Taiwan and the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., have shown that the Greenland Telescope is able to explore some of the Universe's deepest mysteries.

"We can officially announce that we are open for business to explore the cosmos from Greenland," said Timothy Norton of the CfA and senior project manager for the telescope. "It's an exciting day for everyone who has worked so hard to make this happen."

The Greenland Telescope is a 12-meter radio antenna that was originally built as a prototype for the Atacama Large Millimeter/submillimeter Array (ALMA) North America. Once ALMA was operational in Chile, the telescope was repurposed to Greenland to take advantage of the near-ideal conditions of the Arctic to study the Universe at specific radio frequencies, collaborating with the National Radio Astronomy Observatory (NRAO) and MIT Haystack Observatory.

ASIAA led the effort to refurbish and rebuild the antenna to prepare it for the cold climate of Greenland's ice sheet. In 2016, the telescope was shipped to the Thule Air Base in Greenland, 1,200 km inside the Arctic Circle, where it was reassembled at this coastal site. ASIAA also built receivers for the antenna.

"It is extremely challenging to quickly and successfully set up a new telescope in such a cold environment, where temperatures fall below -30 degrees Celsius," said Ming-Tang Chen from ASIAA and the Greenland Telescope project manager. "This is now one of the closest radio telescopes to the North Pole."

After ASIAA scientists began commissioning the telescope on December 1, 2017, they were able to detect radio emission from the Moon on December 25, an event astronomers refer to as "first light." Then in early 2018, the team combined data from the Greenland Telescope's observations of a quasar with data from ALMA. The data from the Greenland Telescope and ALMA were synchronized so that they acted like two points on a radio dish equal in size to the separation of the two observing sites, an achievement that is called "finding fringes."

"This represents a major step in integrating the telescope into a larger, global network of radio telescopes," said Nimesh Patel from CfA and the lead scientist for the Greenland Telescope. "Finding fringes tells us that the Greenland Telescope is working as we hoped and planned."

The Greenland location also allows interferometry with the Smithsonian Astrophysical Observatory (SAO) and ASIAA's Submillimeter Array and the East Asian Observatory's (EAO) James Clerk Maxwell Telescope (JCMT) in Hawaii, ALMA and other radio dishes, to become the northernmost component of the EHT. This extends the baseline of this array in the north-south direction to about 12,000 km.

"The Greenland Telescope is a crucial addition to the EHT, allowing for an even greater separation between the radio dishes in the array and hence better resolution," said Keiichi Asada from ASIAA and the Greenland Telescope project scientist. "We are very excited that the Greenland Telescope is part of this historic project."

The Greenland Telescope joined the EHT observing campaign in the middle of April 2018 to observe the supermassive black hole at the center of the giant elliptical galaxy M87. This supermassive black hole and the one in our galaxy are the two primary targets for the EHT, because the apparent sizes of their event horizons are larger than for any other black hole.

Nevertheless, exquisite telescope resolution is required, equivalent to reading the titles of a newspaper on the Moon viewed from the Earth. This capability is about a thousand times better than what the best optical telescopes in the world can achieve.

Scientists plan to use these observations to help test Einstein's theory of General Relativity in environments where extreme gravity exists, and probe the physics around black holes with unprecedented detail.

In 2011, NSF, the Associated Universities, Inc. (AUI)/NRAO awarded the antenna to the SAO, representing the ASIAA/SAO team, for relocation to Greenland. A future site is under consideration at the summit of the Greenland ice sheet where scientists will be able to take advantage of lower water vapor in the atmosphere overhead to achieve even better resolution.


Related Links
Greenland Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
NOVA: 'Transient Machine' MeerLICHT Inaugurated in South Africa
Amsterdam, Netherlands (SPX) May 30, 2018
On Friday, May 25, 2018, the MeerLICHT telescope has been inaugurated at the Sutherland Observatory, South Africa. MeerLICHT ('more light' in Dutch) is an optical telescope that will be an 'eye of the MeerKAT radio array,' the country's precursor to the Square Kilometre Array (SKA). Together MeerLICHT and MeerKAT will simultaneously be scanning the southern skies. This creates a truly unique combination where astronomers will always be studying stars and galaxies in two parts of the spectrum at the same ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Sentinel-1 warns of refugee island flood risk

Seismometer readings could offer debris flow early warning

Peace needs at least 15 years: Colombian president

China floods to hit US economy: Climate effects through trade chains

STELLAR CHEMISTRY
Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

China to launch two BeiDou-2 backup satellites

China to launch another 11 BeiDou-3 satellites in 2018

STELLAR CHEMISTRY
How did human brains get so large?

How to build a brain: discovery answers evolutionary mystery

Geologic evidence in ancient boulders supports a coastal theory of early settlement in Americas

Wars and clan structure may explain a strange biological event 7,000 years ago

STELLAR CHEMISTRY
Massive beach clean-up for Hong Kong sea turtles

New technique shows what microbes eat

Galapagos iguanas transferred due to overpopulation

France destroys over 500 kilos of ivory stocks

STELLAR CHEMISTRY
Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

Could we predict the next Ebola outbreak by tracking the migratory patterns of bats?

Deadly malaria's evolution revealed

STELLAR CHEMISTRY
Nine jailed in Hong Kong for 'Fishball Revolution' riots

With Cambodia's free press under fire, 'China model' makes inroads

China top court overturns tycoon's conviction in rare reversal

Families of Tiananmen victims urge China's Xi to 're-evaluate' crackdown

STELLAR CHEMISTRY
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.