Medical and Hospital News  
PHYSICS NEWS
Griffith precision measurement takes it to the limit
by Staff Writers
Nathan, Australia (SPX) Nov 06, 2018

Griffith University researchers have demonstrated a procedure for making precise measurements of speed, acceleration, material properties and even gravity waves possible, approaching the ultimate sensitivity allowed by laws of quantum physics.

Griffith University researchers have demonstrated a procedure for making precise measurements of speed, acceleration, material properties and even gravity waves possible, approaching the ultimate sensitivity allowed by laws of quantum physics.

Published in Nature Communications, the work saw the Griffith team, led by Professor Geoff Pryde, working with photons (single particles of light) and using them to measure the extra distance travelled by the light beam, compared to its partner reference beam, as it went through the sample being measured - a thin crystal.

The researchers combined three techniques - entanglement (a kind of quantum connection that can exist between the photons), passing the beams back and forth along the measurement path, and a specially-designed detection technique.

"Every time a photon passes through the sample, it makes a kind of mini-measurement. The total measurement is the combination of all of these mini-measurements," said Griffith's Dr Sergei Slussarenko, who oversaw the experiment. "The more times the photons pass through, the more precise the measurement becomes.

"Our scheme will serve as a blueprint for tools that can measure physical parameters with precision that is literally impossible to achieve with the common measurement devices.

Lead author of the paper Dr Shakib Daryanoosh said this method can be used to investigate and measure other quantum systems.

"These can be very fragile, and every probe photon we send it would disturb it. In this case, using few photons but in the most efficient way possible is critical and our scheme shows how do exactly that," he said.

While one strategy is to just use as many photons as possible, that's not enough to reach the ultimate performance. For that, it is necessary to also extract the maximum amount of measurement information per photon pass, and that is what the Griffith experiment has achieved, coming far closer to the so-called Heisenberg limit of precision than any comparable experiment.

The remaining error is due experimental imperfection, as the scheme designed by Dr Daryanoosh and Professor Howard Wiseman, is capable of achieving the exact Heisenberg limit, in theory.

"The really nice thing about this technique is that it works even when you don't have a good starting guess for the measurement," Prof. Wiseman said. "Previous work has mostly focused a lot on the case where it's possible to make a very good starting approximation, but that's not always possible."

A few extra steps are required before this proof-of-principle demonstration can be harnessed outside the lab.

Producing entangled photons is not simple with current technology, and this means it is still much easier to use many photons inefficiently, rather than each set of entangled photons in the best way possible.

However, according to the team, the ideas behind this approach can find immediate applications in quantum computing algorithms and research in fundamental science.

The scheme can ultimately be extended to a larger number of entangled photons, where the difference of the Heisenberg limit over the usually achievable limit is more significant.

Research paper


Related Links
Griffith University
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


PHYSICS NEWS
Gravitational waves could shed light on dark matter
Zurich, Switzerland (SPX) Oct 24, 2018
The Laser Interferometer Space Antenna (LISA) will enable astrophysicists to observe gravitational waves emitted by black holes as they collide with or capture other black holes. LISA will consist of three spacecraft orbiting the sun in a constant triangle formation. Gravitational waves passing through will distort the sides of the triangle slightly, and these minimal distortions can be detected by laser beams connecting the spacecraft. LISA could therefore add a new sense to scientists' perceptio ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
China to showcase peacekeeping role with UN Security Council visit

New Zealand avalanche kills two Germans, woman survives

Trump's military deployment to the border

Trump threatens to shoot migrants who throw stones at US military

PHYSICS NEWS
China launches BeiDou-3 navigation satellite into highest orbit yet

China successfully launches 41st BeiDou Navigation System Satellite

China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

PHYSICS NEWS
Researchers discover earliest recorded lead exposure in 250,000-year-old Neanderthal teeth

WSU researchers discover new clues on how sleep works in the brain

Earliest hominin migrations into the Arabian Peninsula required no novel adaptations

Bonobos make themselves appear smaller than they actually are

PHYSICS NEWS
Handful of states hold fate of world's vanishing wilderness

A wilderness 'horror story'

China defends decision to ease rhino, tiger parts ban

A 'deal for nature' to rescue wildlife: WWF chief

PHYSICS NEWS
15 emerging technologies that could reduce global catastrophic biological risks

Vaccinating humans to protect mosquitoes from malaria

A step towards biological warfare with insects?

100 years on, Spanish Flu holds lessons for next pandemic

PHYSICS NEWS
China flaunts new partners lured away from Taiwan

Hong Kong art show cancelled after 'China threats'

Pussy Riot activists stand up for Hong Kong freedoms

Lodi Gyari, Dalai Lama's voice in China and US, dies

PHYSICS NEWS
New president to inherit a Mexico plagued with grisly violence

PHYSICS NEWS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.