Medical and Hospital News  
SPACE MEDICINE
Handheld surgical robot can help stem fatal blood loss
by Anne McGovern for MIT News
Boston MA (SPX) Mar 18, 2022

Matt Johnson (right) and Laura Brattain test a new medical device on an artificial model of human tissue and blood vessels. The device helps users to insert a needle and guidewire quickly and accurately into a vessel, a crucial first step to halting rapid blood loss.

After a traumatic accident, there is a small window of time when medical professionals can apply lifesaving treatment to victims with severe internal bleeding. Delivering this type of care is complex, and key interventions require inserting a needle and catheter into a central blood vessel, through which fluids, medications, or other aids can be given.

First responders, such as ambulance emergency medical technicians, are not trained to perform this procedure, so treatment can only be given after the victim is transported to a hospital. In some instances, by the time the victim arrives to receive care, it may already be too late.

A team of researchers at MIT Lincoln Laboratory, led by Laura Brattain and Brian Telfer from the Human Health and Performance Systems Group, together with physicians from the Center for Ultrasound Research and Translation (CURT) at Massachusetts General Hospital, led by Anthony Samir, have developed a solution to this problem.

The Artificial Intelligence-Guided Ultrasound Intervention Device (AI-GUIDE) is a handheld platform technology that has the potential to help personnel with simple training to quickly install a catheter into a common femoral vessel, enabling rapid treatment at the point of injury.

"Simplistically, it's like a highly intelligent stud-finder married to a precision nail gun." says Matt Johnson, a research team member from the laboratory's Human Health and Performance Systems Group.

AI-GUIDE is a platform device made of custom-built algorithms and integrated robotics that could pair with most commercial portable ultrasound devices. To operate AI-GUIDE, a user first places it on the patient's body, near where the thigh meets the abdomen. A simple targeting display guides the user to the correct location and then instructs them to pull a trigger, which precisely inserts the needle into the vessel.

The device verifies that the needle has penetrated the blood vessel, and then prompts the user to advance an integrated guidewire, a thin wire inserted into the body to guide a larger instrument, such as a catheter, into a vessel. The user then manually advances a catheter. Once the catheter is securely in the blood vessel, the device withdraws the needle and the user can remove the device.

With the catheter safely inside the vessel, responders can then deliver fluid, medicine, or other interventions.

As easy as pressing a button
The Lincoln Laboratory team developed the AI in the device by leveraging technology used for real-time object detection in images.

"Using transfer learning, we trained the algorithms on a large dataset of ultrasound scans acquired by our clinical collaborators at MGH," says Lars Gjesteby, a member of the laboratory's research team. "The images contain key landmarks of the vascular anatomy, including the common femoral artery and vein."

These algorithms interpret the visual data coming in from the ultrasound that is paired with AI-GUIDE and then indicate the correct blood vessel location to the user on the display.

"The beauty of the on-device display is that the user never needs to interpret, or even see, the ultrasound imagery," says Mohit Joshi, the team member who designed the display. "They are simply directed to move the device until a rectangle, representing the target vessel, is in the center of the screen."

For the user, the device may seem as easy to use as pressing a button to advance a needle, but to ensure rapid and reliable success, a lot is happening behind the scenes. For example, when a patient has lost a large volume of blood and becomes hypotensive, veins that would typically be round and full of blood become flat. When the needle tip reaches the center of the vein, the wall of the vein is likely to "tent" inward, rather than being punctured by the needle. As a result, though the needle was injected to the proper location, it fails to enter the vessel.

To ensure that the needle reliably punctures the vessel, the team engineered the device to be able to check its own work.

"When AI-GUIDE injects the needle toward the center of the vessel, it searches for the presence of blood by creating suction," says Josh Werblin, the program's mechanical engineer. "Optics in the device's handle trigger when blood is present, indicating that the insertion was successful." This technique is part of why AI-GUIDE has shown very high injection success rates, even in hypotensive scenarios where veins are likely to tent.

Recently, the team published a paper in the journal Biosensors that reports on AI-GUIDE's needle insertion success rates. Users with medical experience ranging from zero to greater than 15 years tested AI-GUIDE on an artificial model of human tissue and blood vessels and one expert user tested it on a series of live, sedated pigs.

The team reported that after only two minutes of verbal training, all users of the device on the artificial human tissue were successful in placing a needle, with all but one completing the task in less than one minute. The expert user was also successful in quickly placing both the needle and the integrated guidewire and catheter in about a minute. The needle insertion speed and accuracy were comparable to that of experienced clinicians operating in hospital environments on human patients.

Theodore Pierce, a radiologist and collaborator from MGH, says AI-GUIDE's design, which makes it stable and easy to use, directly translates to low training requirements and effective performance. "AI-GUIDE has the potential to be faster, more precise, safer, and require less training than current manual image-guided needle placement procedures," he says. "The modular design also permits easy adaptation to a variety of clinical scenarios beyond vascular access, including minimally invasive surgery, image-guided biopsy, and imaging-directed cancer therapy."

In 2021, the team received an R and D 100 Award for AI-GUIDE, recognizing it among the year's most innovative new technologies available for license or on the market.

What's next?
Right now, the team is continuing to test the device and work on fully automating every step of its operation. In particular, they want to automate the guidewire and catheter insertion steps to further reduce risk of user error or potential for infection.

"Retraction of the needle after catheter placement reduces the chance of an inadvertent needle injury, a serious complication in practice which can result in the transmission of diseases such as HIV and hepatitis," says Pierce. "We hope that a reduction in manual manipulation of procedural components, resulting from complete needle, guidewire, and catheter integration, will reduce the risk of central line infection."

AI-GUIDE was built and tested within Lincoln Laboratory's new Virtual Integration Technology Lab (VITL). VITL was built in order to bring a medical device prototyping capability to the laboratory.

"Our vision is to rapidly prototype intelligent medical devices that integrate AI, sensing - particularly portable ultrasound - and miniature robotics to address critical unmet needs for both military and civilian care," says Laura Brattain, who is the AI-GUIDE project co-lead and also holds a visiting scientist position at MGH. "In working closely with our clinical collaborators, we aim to develop capabilities that can be quickly translated to the clinical setting. We expect that VITL's role will continue to grow."

AutonomUS, a startup company founded by AI-GUIDE's MGH co-inventors, recently secured an option for the intellectual property rights for the device. AutonomUS is actively seeking investors and strategic partners.

"We see the AI-GUIDE platform technology becoming ubiquitous throughout the health-care system," says Johnson, "enabling faster and more accurate treatment by users with a broad range of expertise, for both pre-hospital emergency interventions and routine image-guided procedures."


Related Links
Lincoln Laboratory
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
A fabric that "hears" your heart's sounds
Boston MA (SPX) Mar 18, 2022
Having trouble hearing? Just turn up your shirt. That's the idea behind a new "acoustic fabric" developed by engineers at MIT and collaborators at Rhode Island School of Design. The team has designed a fabric that works like a microphone, converting sound first into mechanical vibrations, then into electrical signals, similarly to how our ears hear. All fabrics vibrate in response to audible sounds, though these vibrations are on the scale of nanometers - far too small to ordinarily be sense ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
UN atomic watchdog alarm over shelling of Chernobyl staff town

New fires in Chernobyl exclusion zone: Ukraine deputy PM

Russia occupies Chernobyl staff town, Kyiv says

Kyiv says using AI, social media to identify slain Russians

SPACE MEDICINE
Turn your phone into a space monitoring tool

Identifying RF and GPS interferences for military applications with satellite data

Ukraine war disrupts GPS in Finland, Mediterranean

China's BeiDou enters new phase of stable services, rapid development

SPACE MEDICINE
New predictive model helps in identify ancient hunter-gatherer sites

Ancient campfires reveal a 50,000 year old grocer and pharmacy

Grains hints at origin of 7,000-year-old Swiss pile dwellings

Early humans kept old stone tools to preserve memory of their ancestors

SPACE MEDICINE
Hundreds of new mammal species waiting to be found

Nations ask for new nature talks in Nairobi before key UN meeting

Money at the heart of international efforts to save nature

Body composting takes root in US 'green' burial trend

SPACE MEDICINE
Shanghai won't lock down despite Covid spike: official

'China's Fauci' calls for protecting 'normal life' in Omicron fight

Russian cosmonauts begin growing COVID-19 protein crystals in space

Half of Shanghai in lockdown to curb Covid-19 outbreak

SPACE MEDICINE
Australia voices concern for journalist as trial in China looms

American lawyer released from prison, says 'banned' from Hong Kong

Hong Kong martial arts teacher charged over sedition, weapons

Unwed and unwanted, Chinese single mothers fight for rights

SPACE MEDICINE
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

SPACE MEDICINE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.