Medical and Hospital News
TECH SPACE
Harnessing corrosion to create sustainable lightweight alloys
illustration only
Harnessing corrosion to create sustainable lightweight alloys
by Robert Schreiber
Berlin, Germany (SPX) Jan 13, 2025

Alloying, the technique of combining metals with other elements, has been a cornerstone of materials science, enabling the creation of materials with tailored properties. Traditionally, dealloying has been seen as a corrosive process that selectively removes elements, leading to material degradation. However, researchers at the Max Planck Institute for Sustainable Materials (MPI-SusMat) have reimagined this process, transforming dealloying into a tool for designing lightweight, nanostructured porous martensitic alloys that are CO2-free and energy-efficient. Their findings are detailed in the journal Science Advances.

The microstructure of metallic alloys, determined by atomic arrangement and composition, is critical to material properties. Conventional dealloying processes degrade these structures by removing atoms. In contrast, the MPI-SusMat team explored how dealloying could be used to create beneficial microstructures. "We aimed to use the dealloying process to remove oxygen from the lattice structure, modulating porosity via the creation and agglomeration of oxygen vacancies," explained Dr. Shaolou Wei, Humboldt research fellow at MPI-SusMat and the study's lead author. "This method opens new pathways for designing lightweight, high-strength materials."

Central to their approach is reactive vapor-phase dealloying, a technique that employs a reactive gas atmosphere to remove oxygen atoms from the lattice. This gas, composed of ammonia, serves dual roles: it acts as a reductant through its hydrogen content and introduces nitrogen to enhance material properties. "This dual role of ammonia - removing oxygen and adding nitrogen - is a key innovation in our approach, since it assigns all atoms from both reaction partners specific roles," said Professor Dierk Raabe, managing director of MPI-SusMat and corresponding author of the study.

Four integrated metallurgical processes

The team's innovation lies in merging four metallurgical processes into one reactor step:

1. Oxide dealloying: Removes oxygen to create porosity and simultaneously reduces metal ores with hydrogen.

2. Substitutional alloying: Encourages interdiffusion between metallic elements after oxygen removal.

3. Interstitial alloying: Introduces nitrogen from the vapor phase into the metal lattice.

4. Phase transformation: Activates martensitic transformation to achieve nanoscale structuring.

This method simplifies alloy production and promotes sustainability by starting with oxides and using ammonia or industrial waste emissions as reactive gases. Replacing carbon with hydrogen as a reductant ensures the process is CO2-free, with water as the only byproduct. Thermodynamic modeling has confirmed the feasibility of this approach for metals such as iron, nickel, cobalt, and copper.

Advancing lightweight design

The resulting nanostructured porous martensitic alloys are both lightweight and strong, thanks to precise control of their microstructure. Unlike conventional methods that require energy-intensive processes to create porosity, this approach accelerates porosity formation while introducing nitrogen to strengthen the material.

Potential applications include lightweight structural components and functional devices such as iron-nitride-based hard magnetic alloys, which could outperform rare-earth magnets. The team also envisions adapting their method to use impure industrial oxides and alternative reactive gases, reducing reliance on rare-earth materials and high-purity feedstocks. Such advancements align with global sustainability goals and could revolutionize alloy production.

By rethinking traditional metallurgical processes, the MPI-SusMat researchers have showcased how sustainability and cutting-edge microstructure engineering can drive significant advances in materials science.

This research was supported by a fellowship for Shaolou Wei from the Alexander von Humboldt Foundation, a European Advanced Research Grant awarded to Dierk Raabe, and a Cooperation Grant from the Max Planck and Fraunhofer Societies.

Research Report:Reactive vapor-phase dealloying-alloying turns oxides into sustainable bulk nano-structured alloys

Related Links
Max Planck Institute for Sustainable Materials
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Study uncovers gold's journey from Earth's mantle to surface
Los Angeles CA (SPX) Jan 13, 2025
A team of researchers, including a University of Michigan scientist, has identified a gold-sulfur complex that sheds light on the processes behind gold's movement from Earth's mantle to its surface. Gold found in ore deposits near volcanoes in the Pacific Ring of Fire originates deep within Earth's mantle. Magma carries it upward, but the exact mechanisms have long been debated. Using advanced numerical modeling, the team uncovered the conditions that enrich magmas with gold as they ascend from th ... read more

TECH SPACE
Braced with fire defenses, Getty art center faces LA flames

Mexico's president formally launches campaign to get guns off streets

Italy FM says new Syria leader pledged to stop 'illegal immigration'

Climate disasters drive unusually high losses in 2024: Munich Re

TECH SPACE
SpaceX launches Space Force Rapid Response Trailblazer

GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

TECH SPACE
CES tech looks to help world's aging population

Iraqi archaeologists piece together ancient treasures ravaged by IS

Catholics hold muted Christmas mass in Indonesia's Sharia stronghold

Travelers consider weight-based airfares for sustainable flights

TECH SPACE
China's viral wild boar hunters attract fame and concern

Tiny plants reveal big potential for boosting crop efficiency

Some bacteria evolve in seasonal cycles like clockwork

Algerians campaign to save treasured songbird from hunters

TECH SPACE
China reports 5 cases of new mpox strain

What you need to know about HMPV

China says shared Covid information 'without holding anything back'

Five years on, WHO urges China to share Covid origins data

TECH SPACE
China's Xi vows 'all-out battle against corruption'

Driver in central China car ramming handed suspended death sentence

On China's doorstep, Macau weaves an identity as integration looms

Xi to arrive in Macau for 25th anniversary of Chinese rule

TECH SPACE
Charred bodies in Ecuador are missing adolescents, say officials

Blast kills two Mexican soldiers, five wounded

Four killed in Colombia airstrike against drug cartel

Somali pirates demand ransom for Chinese vessel

TECH SPACE
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.