. Medical and Hospital News .




.
ENERGY TECH
Helping superconductors turn up the heat
by Staff Writers
Coral Gables FL (SPX) Jun 20, 2012

University of Miami physics professor Josef Ashkenazi discusses supercooling with liquid nitrogen and superconductors. Credit: University of Miami.

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world.

Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature constraints.

"Understanding how superconductivity works at higher temperatures will make it easier to know how to look for such superconductors, how to engineer them, and then how to integrate them into new technologies," says Josef Ashkenazi, associate professor of physics at the UM College of Arts and Sciences and first author of the study. "It's always been like this when it comes to science: once you understand it, the technological applications follow."

At room temperature, superconducting materials behave like typical metals, but when the temperature is lowered toward absolute zero (at around -273oC, or -460oF), resistance to electric current suddenly drops to zero, making it ultra-efficient in terms of energy use. Although absolute zero is unachievable, substances such as liquid helium and liquid nitrogen can be used to cool materials to temperatures approaching it.

Researchers are also working on creating materials that yield superconductivity in a less frigid environment. The point at which a matter becomes a superconductor is called critical or transition temperature. So far, the highest critical temperature of a superconducting material is about -130oC (-200oF).

"But just 'cooking' new materials that produce superconductivity at higher temperatures can be very tedious and expensive, when one doesn't know exactly how the process works," says Neil Johnson, professor of physics in the UM College of Arts and Sciences and co-author of the study.

To understand the problem, the UM team studied what happens in a metal at the exact moment when it stops being a superconductor. "At that point, there are great fluctuations in the sea of electrons, and the material jumps back and forth between being a superconductor and not being one," Johnson says.

The key to understanding what happens at that critical point lies in the unique world of quantum particles. In this diminutive universe, matter behaves in ways that are impossible to replicate in the macroscopic world. It is governed not by the laws of classical physics, but by the laws of quantum mechanics.

One of the most perplexing features of quantum mechanics is that a system can be described by the combination or 'superposition' of many possible states, with each possible state being present in the system at the same time. Raising the critical temperature of superconductors is prevented in common cases, because it creates a fragmentation of the system into separate states; this act suppresses high-temperature superconductivity.

What Ashkenazi and Johnson found is that just above the critical temperature specific quantum effects can come to the floor and generate superpositions of individual states. This superposition of states provides an effective "glue," which helps repair the system, allowing superconducting behavior to emerge once again. This model provides a mechanism for high temperature superconductivity.

"Finding a path to high-temperature superconductivity is currently one of the most challenging problems in physics," says Ashkenazi. "We present for the first time, a unified approach to this problem by combining what has prevented scientists from achieving high-temperature superconductivity in the past, with what we now know is permitted under the quantum laws of nature."

"The new model combines elements at two levels: physically pulling together the fragments of the system at the quantum level, and theoretically threading together components of many other existing theories about superconductivity," Johnson says.

Understanding how superconductivity is pushed beyond the present critical temperatures will help researchers recreate the phenomenon at a wider temperature range, in different materials, and could spur the development of smaller, more powerful and energy efficient technologies that would benefit society.

The study, titled "Pairing Glue Activation in Curates within the Quantum Critical Regime," is published online ahead of print by the journal Europhysics Letters.

Related Links
University of Miami
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Blair leads call for worldwide 'green industrial revolution'
Rio De Janeiro (AFP) June 18, 2012
Former British premier Tony Blair and other statesmen and corporate chiefs urged world leaders Monday to usher in "a green industrial revolution" to steer the planet on a sustainable future. "By the end of the decade, the low carbon market could triple in value to over US$2 trillion," said the signatories of an open letter published on the eve of the G20 and Rio+20 summits. They called f ... read more


ENERGY TECH
Nearly 15 million people displaced by disasters in 2011

Experts discuss better nuclear disaster communication

Afghan quake rescue operation declared over

Japan to develop drones to monitor radiation

ENERGY TECH
GPS being used as weather forecast tool

Apple fends off Android challenge with maps, Siri

Boeing, Raytheon and Harris to Pursue GPS Control Segment Sustainment Contract

Revamped Google maps goes offline for mobile

ENERGY TECH
The Rare Biosphere of the Human Body

Expanding waistlines threaten the planet: researchers

More people, more environmental stress

How infectious disease may have shaped human origins

ENERGY TECH
Herbivores select on floral architecture in a South African bird-pollinated plant

Loss of biodiversity increasingly threatens human well-being

Brazil picks up the baton for struggling UN summit

Stealing life's building blocks

ENERGY TECH
HIV may have returned in 'cured' patient: scientists

Mama Portia dishes out help for AIDS orphans

Revealed: Secret of HIV's natural born killers

New study shows why swine flu virus develops drug resistance

ENERGY TECH
Dalai Lama forms unlikely double act on UK tour

China urges eurozone cooperation to resolve crisis

China hit by another self-immolation: state media

China boycotts religious event over Tibet presence

ENERGY TECH
Incidence, types of marine piracy studied

Somali Islamists fire on foreign warships

Iran navy saves US freighter from pirates: report

Jailing of marines hitting anti-piracy efforts: Italy

ENERGY TECH
World leaders weigh 'green' economy at Rio summit

China, India step up global role with fund

Outside View: Averting financial meltdown

Rio+20: Relief but few smiles as deal forged on eve of summit


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement