Medical and Hospital News  
IRON AND ICE
High-pressure experiments solve meteorite mystery
by Staff Writers
Hamburg, Germany (SPX) Jun 08, 2017


Cristobalite crystals from Harvard Mineralogical Museum, found at Ellora caves in India. Credit: RRUFF Project / University of Arizona

With high-pressure experiments at DESY's X-ray light source PETRA III and other facilities, a research team around Leonid Dubrovinsky from the University of Bayreuth has solved a long standing riddle in the analysis of meteorites from Moon and Mars. The study, published in the journal Nature Communications, can explain why different versions of silica can coexist in meteorites, although they normally require vastly different conditions to form. The results also mean that previous assessments of conditions at which meteorites have been formed have to be carefully re-considered.

The scientists investigated a silicon dioxide (SiO2) mineral that is called cristobalite. "This mineral is of particular interest when studying planetary samples, such as meteorites, because this is the predominant silica mineral in extra-terrestrial materials," explains first author Ana Cernok from Bayerisches Geoinstitut (BGI) at University Bayreuth, who is now based at the Open University in the UK. "Cristobalite has the same chemical composition as quartz, but the structure is significantly different," adds co-author Razvan Caracas from CNRS, ENS de Lyon.

Different from ubiquitous quartz, cristobalite is relatively rare on Earth's surface, as it only forms at very high temperatures under special conditions. But it is quite common in meteorites from Moon and Mars. Ejected by asteroid impacts from the surface of Moon or Mars, these rocks finally fell to Earth.

Surprisingly, researchers have also found the silica mineral seifertite together with cristobalite in Martian and lunar meteorites. Seifertite was first synthesised by Dubrovinsky and colleagues 20 years ago and needs extremely high pressures to form. "Finding cristobalite and seifertite in the same grain of meteorite material is enigmatic, as they form under vastly different pressures and temperatures," underlines Dubrovinsky.

"Triggered by this curious observation, the behaviour of cristobalite at high-pressures has been examined by numerous experimental and theoretical studies for more than two decades, but the puzzle could not be solved."

Using the intense X-rays from PETRA III at DESY and the European Synchrotron Radiation Facility ESRF in Grenoble (France), the scientists could now get unprecedented views at the structure of cristobalite under high pressures of up to 83 giga-pascals (GPa), which corresponds to roughly 820,000 times the atmospheric pressure.

"The experiments showed that when cristobalite is compressed uniformly or almost uniformly - or as we say, under hydrostatic or quasi-hydrostatic conditions - it assumes a high-pressure phase labelled cristobalite X-I," explains DESY co-author Elena Bykova who works at the Extreme Conditions Beamline P02.2 at PETRA III, where the experiments took place. "This high-pressure phase reverts back to normal cristobalite when the pressure is released."

But if cristobalite is compressed unevenly under what scientists call non-hydrostatic conditions, it unexpectedly converts into a seifertite-like structure, as the experiments have now shown. This structure forms under significantly less pressure than necessary to form seifertite from ordinary silica. "The ab initio calculations confirm the dynamical stability of the new phase up to high pressures," says Caracas. Moreover it also remains stable when the pressure is released.

"This came as a surprise," says Cernok. "Our study clarifies how squeezed cristobalite can transform into seifertite at much lower pressure than expected. Therefore, meteorites that contain seifertite associated with cristobalite have not necessarily experienced massive impacts." During an impact, the propagation of the shock wave through the rock can create very complex stress patterns even with intersecting areas of hydrostatically and non-hydrostatically compressed materials, so that different versions of silica can form in the same meteorite.

"These results have immediate implications for studying impact processes in the solar system," underlines Dubrovinsky. "They provide clear evidence that neither cristobalite nor seifertite should be considered as reliable tracers of the peak shock conditions experienced by meteorites."

But the observations also show more generally that the same material can react very differently to hydrostatic and non-hydrostatic compression, as Dubrovinsky explains. "For materials sciences our results suggest an additional mechanism for the manipulation of the properties of materials: Apart from pressure and temperature, different forms of stress may lead to completely different behaviour of solid matter."

Compressional pathways of a-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation; Ana Cernok, Katharina Marquardt, Razvan Caracas, Elena Bykova, Gerlinde Habler, Hanns-Peter Liermann, Michael Hanfland, Mohamed Mezouar, Ema Bobocioiu, and Leonid Dubrovinsky; Nature Communications", 2017; DOI: 10.1038/ncomms15647

IRON AND ICE
Scientists solve meteorite mystery with high-pressure X-ray experiments
Washington (UPI) Jun 7, 2017
Scientists have long struggled to understand how different types of silica, which require distinction formation conditions, are commonly found in the same meteorite. Thanks to PETRA III, the X-ray light accelerator at DESY, the German research facilities, scientists finally have some answers. Researchers used high-pressure experiments to better understand the conditions under whi ... read more

Related Links
Deutsches Elektronen-Synchrotron DESY
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
GMV to supply Copernicus services in support to EU external action

Teen killed in Venezuela as military commander urges troops not to hurt protesters

Sri Lanka hails record military deployment as toll hits 213

Japan workers exposed to dangerous radiation in lab

IRON AND ICE
GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

Chinese firms develop BeiDou navigation applications

IRON AND ICE
Living long and living well: Is it possible to do both

Ancient grains offer insights into the birth and growth of the world's oldest cities

Tourists risk getting bit when they mistake monkey aggression for affection

Fossil skeleton confirms earliest primates were tree dwellers

IRON AND ICE
Skin cure fad driving Myanmar elephant poaching surge: WWF

African park ranger hits out at Hong Kong ivory trade

How the Galapagos cormorant lost its ability to fly

How and why did a house swift cross the Pacific

IRON AND ICE
Toward an HIV cure: Pitt team develops test to detect hidden virus

'Freak': meet Cuba's last self-infected HIV punk rebel

Stars dig deep at charity Cannes AIDS gala

Hundreds of Chinese students hospitalised for norovirus: Xinhua

IRON AND ICE
China rights lawyer charged with subversion

Chinese skinny-dippers defy public morals

Thousands gather at Hong Kong Tiananmen vigil

US returns criminal suspect to China

IRON AND ICE
Golden Triangle narco-gangs churning out new highs, UN warns

UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

IRON AND ICE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.