Medical and Hospital News  
TECH SPACE
How X-rays in matter create genetoxic low-energy electrons
by Staff Writers
Sendai, Japan (SPX) Feb 01, 2017


Scientists have elucidated a novel mechanism of electron emission from matter caused by X-rays. In the studied model system, X-rays produce the doubly-charged particle (Ne2+), which catches an electron from one of the neighboring atoms (Kr), transferring the energy to the other and releasing another electron. Image courtesy Kiyoshi Ueda.

Researchers led by Kiyoshi Ueda of Tohoku University have investigated what x-rays in matter really do and identified a new mechanism of producing low-energy free electrons. Since the low-energy electrons cause damage to the matter, the identified process might be important in understanding and designing radiation treatment of illnesses.

X-rays are one of the most important diagnostic tools in medicine, biology and the material sciences, as they may penetrate deep into material which is opaque to the human eye. Their passage through a sample, however, can have side effects, as the absorption of X-rays deposes energy in deep layers of the sample. In extreme cases, the application of X-rays is limited by these side effects, known as 'radiation damage'. Medicine is one area in which the absorbed X-ray dose must be minimized.

Surprisingly, it is unclear what happens when an X-ray is absorbed, for example, in biological tissue consisting of water, biomolecules and some metal atoms. One reason for this is that the first few steps of reactions after the absorption of an X-ray, happen extremely fast, within 10-100 femtoseconds. A femtosecond is the SI unit of time equal to 10?15. To put it another way, it's one millionth of one billionth of a second.

Within this time, in a complex cascade of events, several electrons are emitted, and positively charged reactive particles (ions) are created. Most experiments done up to now were only able to characterize this final state a long time after the cascading reaction was completed. However, it is the precise understanding of the intermediate steps that is very important for the prediction and design of radiation effects in matter.

The team has now carried out an experiment that took an unprecedented detailed view of the first few hundred fs after absorption of an X-ray by matter.

In a biological system, a lot of water molecules are flexibly arranged around the biologically functional molecules, without strongly binding to them.

As a model system for that, a flexible, weakly bonded aggregate of two different noble gases, Ne and Kr, was created by cooling them to extremely low temperatures. These Ne-Kr clusters were then exposed to pulsed X-rays of the SPring-8 synchrotron radiation source which, under the conditions chosen for the experiment, preferentially ionized Ne atoms.

By using an advanced experimental set-up, the team was able to record all electrons and ions that were created at every X-ray absorption event. They found that just a few hundred fs after the initial ionization, the Ne atom that had absorbed the x-ray, as well as two neighboring Kr atoms, were all in an ionized, positively charged state.

The mechanism by which this ultrafast charge redistribution proceeds, proposed theoretically by research team member Lorenz Cederbaum, has been named the 'Electron Transfer Mediated Decay' (ETMD).

It consists of electron transfer to the originally ionized Ne atom matched by energy transfer away from the Ne, which leads to ionization of the second Kr atom nearby. The experiment clearly demonstrates that highly localized charge produced by X-rays in matter, redistributes over many atomic sites in a surprisingly short time.

Kiyoshi Ueda says: 'We believe that understanding X-ray initiated processes on a microscopic level will lead to new insights across the disciplines of physics, biology and chemistry.'

These results have been published in the scientific journal Nature Communications.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
NASA studies cosmic radiation to protect high-altitude travelers
Greenbelt MD (SPX) Jan 30, 2017
NASA scientists studying high-altitude radiation recently published new results on the effects of cosmic radiation in our atmosphere. Their research will help improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments. Imagine you're sitting on an airplane. Cruising through the stratosphere at 36,000 feet, you're we ... read more


TECH SPACE
Leidos receives CBRNE simulation task order

Hollande urges Trump to 'respect' principle of accepting refugees

Climate change drove population decline in New World before Europeans arrived

Rich? Scared about the Trumpocalypse? Try New Zealand

TECH SPACE
India's Satnav Goes Out of Whack as Orbiting Atomic Clocks Break

First-ever GPS data release to boost space-weather science

NASA space radio could change how flights are tracked worldwide

ISRO to Launch Standby Navigation Satellite to Replace IRNSS-1A

TECH SPACE
Brain-computer interface allows completely locked-in people to communicate

Study finds genetic continuity between modern East Asia people and their Stone Age relatives

Girls less likely to associate 'brilliance' with their own gender

Scientists find link between brain shape and personality

TECH SPACE
Plants emit different odors when eaten by invasive species

Beleaguered bees hit by 'deformed wing virus'

Researchers develop label-free technique to image microtubules

Italy bows to howls over anti-wolf campaign

TECH SPACE
Bird flu outbreak spreads to Belgium

UTA materials scientist invents breath monitor to detect flu

Fears over bird flu in China after 9 deaths this year

Why Lyme disease is common in the north, rare in the south

TECH SPACE
'Abduction' of China tycoon sparks fear in Hong Kong

Missing Chinese billionaire targeted over stocks crash: report

Hong Kong leadership favourite testifies in corruption trial

Trump to ruffle feathers in Year of the Rooster

TECH SPACE
TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.