Medical and Hospital News  
STELLAR CHEMISTRY
How to Learn a Star's True Age

Using the unique capabilities of NASA's Kepler space telescope, Soren Meibom (CfA) and his collaborators measured the rotation rates for stars in a 1-billion-year-old cluster called NGC 6811. They found rotation periods ranging from 1 to 11 days (with hotter, more massive stars spinning faster), compared to the 30-day spin rate of our Sun. More importantly, they found a strong relationship between stellar mass and rotation rate, with little scatter. This result confirms that gyrochronology is a promising new method to learn the ages of isolated stars. Credit: Anthony Ayiomamitis
by Staff Writers
Cambridge MA (SPX) May 25, 2011
For many movie stars, their age is a well-kept secret. In space, the same is true of the actual stars. Like our Sun, most stars look almost the same for most of their lives. So how can we tell if a star is one billion or 10 billion years old? Astronomers may have found a solution - measuring the star's spin.

"A star's rotation slows down steadily with time, like a top spinning on a table, and can be used as a clock to determine its age," says astronomer Soren Meibom of the Harvard-Smithsonian Center for Astrophysics.

Meibom has presented his findings in a press conference at the 218th meeting of the American Astronomical Society.

Knowing a star's age is important for many astronomical studies and in particular for planet hunters. With the bountiful harvest from NASA's Kepler spacecraft (launched in 2009) adding to previous discoveries, astronomers have found nearly 2,000 planets orbiting distant stars. Now, they want to use this new zoo of planets to understand how planetary systems form and evolve and why they are so different from each other.

"Ultimately, we need to know the ages of the stars and their planets to assess whether alien life might have evolved on these distant worlds," says Meibom. "The older the planet, the more time life has had to get started. Since stars and planets form together at the same time, if we know a star's age, we know the age of its planets too."

Learning a star's age is relatively easy when it's in a cluster of hundreds of stars that all formed at the same time. Astronomers have known for decades that if they plot the colors and brightnesses of the stars in a cluster, the pattern they see can be used to tell the cluster's age. But this technique only works on clusters. For stars not in clusters (including all stars known to have planets), determining the age is much more difficult.

Using the unique capabilities of the Kepler space telescope, Meibom and his collaborators measured the rotation rates for stars in a 1-billion-year-old cluster called NGC 6811. This new work nearly doubles the age covered by previous studies of younger clusters. It also significantly adds to our knowledge of how a star's spin rate and age are related.

If a relationship between stellar rotation and age can be established by studying stars in clusters, then measuring the rotation period of any star can be used to derive its age - a technique called gyrochronology (pronounced ji-ro-kron-o-lo-gee). For gyrochronology to work, astronomers first must calibrate their new "clock."

They begin with stars in clusters with known ages. By measuring the spins of cluster stars, they can learn what spin rate to expect for that age. Measuring the rotation of stars in clusters with different ages tells them exactly how spin and age are related. Then by extension, they can measure the spin of a single isolated star and calculate its age.

To measure a star's spin, astronomers look for changes in its brightness caused by dark spots on its surface - the stellar equivalent of sunspots. Any time a spot crosses the star's face, it dims slightly. Once the spot rotates out of view, the star's light brightens again. By watching how long it takes for a spot to rotate into view, across the star and out of view again, we learn how fast the star is spinning.

The changes in a star's brightness due to spots are very small, typically a few percent or less, and become smaller the older the star. Therefore, the rotation periods of stars older than about half a billion years can't be measured from the ground where Earth's atmosphere interferes.

Fortunately, this is not a problem for the Kepler spacecraft. Kepler was designed specifically to measure stellar brightnesses very precisely in order to detect planets (which block a star's light ever so slightly if they cross the star's face from our point of view).

To extend the age-rotation relationship to NGC 6811, Meibom and his colleagues faced a herculean task. They spent four years painstakingly sorting out stars in the cluster from unrelated stars that just happened to be seen in the same direction. This preparatory work was done using a specially designed instrument (Hectochelle) mounted on the MMT telescope on Mt. Hopkins in southern Arizona.

Hectochelle can observe 240 stars at the same time, allowing them to observe nearly 7000 stars over four years. Once they knew which stars were the real cluster stars, they used Kepler data to determine how fast those stars were spinning.

They found rotation periods ranging from 1 to 11 days (with hotter, more massive stars spinning faster), compared to the 30-day spin rate of our Sun. More importantly, they found a strong relationship between stellar mass and rotation rate, with little scatter. This result confirms that gyrochronology is a promising new method to learn the ages of isolated stars.

The team now plans to study other, older star clusters to continue calibrating their stellar "clocks." Those measurements will be more challenging because older stars spin slower and have fewer and smaller spots, meaning that the brightness changes will be even smaller and more drawn out. Nevertheless, they feel up to the challenge.

"This work is a leap in our understanding of how stars like our Sun work. It also may have an important impact on our understanding of planets found outside our solar system," said Meibom.

The paper reporting this research has been accepted for publication in The Astrophysical Journal Letters and is posted online.

NASA Ames Research Center is responsible for the ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system, and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
Feuding helium dwarfs exposed by eclipse
Warwick, UK (SPX) May 25, 2011
Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium. We know of just over 50 close double white dwarfs but this was only the second ever eclipsing close white dwarf pair to be found. The University of Warwick astronomers Steven Parsons and Professor Tom Marsh were able to u ... read more







STELLAR CHEMISTRY
Fire at Japanese nuclear plant

Report queries Haiti quake death toll, homeless

Earthquake statement leads to charges

G8 'fully confident' Japan will recover from nuke disaster

STELLAR CHEMISTRY
EU to launch Galileo satellites this fall

Galileo: Europe prepares for October launch

EU announces launch date for first Galileo satellites

Europe's first EGNOS airport to guide down giant Beluga aircraft

STELLAR CHEMISTRY
Scientists trick the brain into Barbie-doll size

New level of genetic diversity in human RNA sequences uncovered

Standing up to fight

Most common form of inherited intellectual disability may be treatable

STELLAR CHEMISTRY
Species reemergence after collapse is possible but different

Innate Immune System Proteins Attack Bacteria by Triggering Bacterial Suicide Mechanisms

Scientists list top 10 new species in 2010

Oceanic land crab extinction and the colonization of Hawaii

STELLAR CHEMISTRY
HIV on rise in ex-communist bloc, AIDS experts warn

Long-term study of swine flu viruses shows increasing viral diversity

Drag queen breaches G8 to protest unkept AIDS promises

Mummies tell history of a modern plague

STELLAR CHEMISTRY
China milk activist home after brief detention

Security tight in China's Inner Mongolia after demos

Lawmakers seek US regret for barring Chinese

Three blasts hit China govt buildings, two dead: Xinhua

STELLAR CHEMISTRY
US Navy recruits gamers to help in piracy strategy

Danish crew free Somali pirate hostages

Cargo ship, China crew rescued from pirates

Pirates seize Chinese-crewed cargo ship: Xinhua

STELLAR CHEMISTRY
Commentary: Shining citadel redux

Japan consumer prices log first rise in 28 months

Kan reassures G8 partners of Japan recovery

Fitch cuts outlook for Japan debt to negative


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement