Medical and Hospital News  
SOLAR DAILY
How to design organic solar cell materials
by Staff Writers
Mainz, Germany (SPX) Oct 28, 2020

Dye molecules in modern organic solar cells led to a two-fold improvement of organic solar cell efficiency as compared to the widely used fullerenes.

Most of us are familiar with silicon solar cells, which can be found on the rooftops of modern houses. These cells are made of two silicon layers, which contain different atoms such as boron and phosphorus. When combined, these layers direct charges generated by the absorbed sunlight towards the electrodes - this (photo)current can then be used to power electronic devices.

The situation is somewhat different in organic solar cells. Here, two organic materials are mixed together, rather than arranged in a layered structure. They are blends of different types of molecules. One type, the acceptor, likes to take electrons from the other, the donor. To quantify how likely "electron transfer" between these materials takes place, one measures the so-called "electron affinity" and "ionization energy" of each material.

These quantities indicate how easy it is to add or extract an electron from a molecule. In addition to determining the efficiency of organic solar cells, electron affinity and ionization energy also control other material properties, such as color and transparency.

By pairing donor and acceptor materials, one creates a solar cell. In an organic solar cell, light-particles ("photons") transfer their energy to electrons. Excited electrons leave behind positive charges, called "holes". These electron-hole pairs are then separated at the interface between the two materials, driven by the differences in the electron affinity and ionization energy.

Until now, scientists assumed that both electron affinity and ionization energy are equally important for the solar cell functionality. Researchers from KAUST and MPI-P have now discovered that in many donor-acceptor blends, it is mainly the difference of the ionization energy between the two materials, which determines the efficiency of the solar cell.

The combination of results from optical spectroscopy experiments, performed in the group of Frederic Laquai at KAUST, as well as computer simulations performed in the group of Denis Andrienko, MPI-P, in the department headed by Kurt Kremer, allowed precise design rules for molecular dyes to be derived, aimed at maximizing solar cell efficiency.

"In the future, for example, it would be conceivable to produce transparent solar cells that only absorb light outside the range visible to humans - but then with the maximum efficiency in this range," says Denis Andrienko, co-author of the study published in the journal "Nature Materials". "With such solar cells, whole fronts of houses could be used as active surface", Laquai adds.

The authors envision that these studies will allow them to reach 20 % solar cell efficiency, a target that industry has in mind for cost-effective application of organic photovoltaics.

Research paper


Related Links
Max Planck Institute For Polymer Research
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Turning streetwear into solar power plants
Dubendorf, Switzerland (SPX) Oct 23, 2020
Our hunger for energy is insatiable, it even continues to rise with the increasing supply of new electronic gadgets. What's more, we are almost always on the move and thus permanently dependent on a power supply to recharge our smartphones, tablets and laptops. In the future, power sockets (at least for this purpose) could possibly become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, jackets, T-shirts and the like could ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
11 soldiers dead, 11 missing in Vietnam after second big landslide in days

Japan to release treated Fukushima water into sea: reports

Cyber warriors sound warning on working from home

G20 to extend debt relief for poor countries by six months

SOLAR DAILY
China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

SOLAR DAILY
Neural pathway crucial to successful rapid object recognition in primates

Climate change likely drove early human species to extinction, modeling study suggests

Monkey study suggests that they, like humans, may have 'self-domesticated'

Modern humans took detours on their way to Europe

SOLAR DAILY
Study: Salt-based mosquito-control products don't work

80 pct of Europe's natural habitats in poor shape: report

Seeing evolution happening before your eyes

Ivory Coast no more

SOLAR DAILY
Bolsonaro shoots down plan to buy Chinese vaccine

Brazil embraces Chinese Covid vaccine after row

Translation tools, air purifiers: face masks go high-tech

Plague transmission rates increased from the Black Death to the Great Plague

SOLAR DAILY
Bad faith: China's 'underground' Catholics wary of Vatican deal

US tightens rules on more Chinese media outlets

China beefs up laws to handle epidemics, protect whistleblowers

China warns Canada against granting Hong Kongers sanctuary

SOLAR DAILY
Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.