Medical and Hospital News  
WHALES AHOY
How to monitor global ocean warming - without harming whales
by Staff Writers
Seattle WA (SPX) Nov 22, 2016


Internal tides seen in sea surface height satellite data recorded from 1992 to 2012. Figures show (a) northbound and (b) southbound waves. The blue patches are places where the data was inconclusive. Black boxes are example regions used in the analysis. Image courtesy Zhongxiang Zhao/University of Washington. For a larger version of this image please go here.

Most of the extra heat trapped by human-generated emissions is ending up in the oceans. But tracking the temperature of the world's oceans to monitor the change is trickier than it might seem. While satellites monitor surface temperature, measuring the ocean's interior temperature poses a logistical challenge.

A University of Washington oceanographer has proposed a method to cheaply monitor temperature throughout the depths of the world's oceans. He improves on a similar method, proposed in the 1970s, that later caused concerns for harming marine mammals. The paper was recently published in Geophysical Research Letters.

"We want to monitor global ocean warming, not just for tomorrow or next year, but for decades," said author Zhongxiang Zhao, an oceanographer at the UW's Applied Physics Laboratory. "Using internal tidal waves is cheaper and more reliable than any existing method."

Satellites can take the temperature of the ocean's surface. Below the surface only ocean vessels and, more recently, robotic floats that travel vertically through the water can take direct measurements of water temperature. Maintaining these instruments throughout the world's oceans, however, is expensive.

Acoustic tomography, an idea proposed in the 1970s by one of the world's most famous oceanographers, Walter Munk, seemed to offer a solution. Sound travels faster in warmer water, so he proposed measuring the time for an acoustic pulse to travel across the ocean. Unfortunately, over time the sonar blasts caused public concern for their harmful impacts on marine mammals, and a major experiment using this method was ended in 2006.

Zhao has developed a way to instead monitor the travel time of internal tidal waves that travel silently in the middle of the ocean. Everyone is familiar with the tides that slosh on beaches at the surface. But the ocean is made up of layers of liquid with different properties that slosh around as they feel the tug of the moon.

"Internal tidal waves start from submarine bumps," Zhao said, when tidally driven currents pass over an oceanic ridge or other bottom feature. These secondary waves then travel with a wavelength of about 160 kilometers (100 miles) and a speed of 3 to 4 meters per second (7 to 9 miles per hour) depending on latitude. Climate change is warming the upper ocean more quickly than the layers below, and this increases the speed of internal tidal waves.

Zhao's method uses satellite data to see tiny changes in the height of the ocean's surface that are caused by water motion deep below.

"We have an internal wave inside the ocean that is 20 to 50 meters (60 to160 feet) high," Zhao said. "But at the surface we have a height change of only about 2 centimeters (0.8 inches), compared to about 1 meter (3 feet) for the surface tides."

Zhao has spent about a decade perfecting his method to track these smaller bumps and sort out interference between internal waves. By analyzing the travel times over the past 20 years, he showed a 1 percent increase in speed over that time along two paths in the Atlantic Ocean. He also compared his technique with Argo observations since 2005, showing a good match between the two methods.

"The internal tidal wave is a naturally occurring ocean phenomenon, so monitoring its long-term variability is very cheap," Zhao said. "This method offers a cost-effective way to measure temperature changes over the whole depth of the ocean."

The popular Argo oceanographic floats only measure the top 2 kilometers (1.2 miles) of the ocean, less than half the average depth. Upcoming Deep Argo floats aim to monitor to 3 miles depth, where some human-generated heat may be hiding. But new floats would add to the pro gram's existing $24 million annual budget, and spatial coverage would depend on how many floats were deployed.

The new method takes a satellite's-eye view of the Earth using tomography, the same imaging technique that is used in many medical practices.

"If you are a doctor, you are scanning the health of your patient - I am like a doctor scanning the Earth, who can see if it is getting a temperature," Zhao said. "This method offers a long-term, cost-effective, environmentally friendly technique for monitoring global ocean warming."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Follow the Whaling Debate






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WHALES AHOY
Narwhal echolocation beams may be the most directional of any species
London, UK (SPX) Nov 11, 2016
Analysis of some of the first recordings of wintering narwhals showed that they may have the most directional sonar of any species, according to a study published November 9, 2016 in the open-access journal PLOS ONE by Jens Koblitz from Bioacoustics Network, Germany, and colleagues. The narwhal is considered one of the Arctic's most sensitive marine mammals: more than 80 percent winter in ... read more


WHALES AHOY
Pentagon softens rules on carrying of firearms in US

Scientists model mass gatherings, identify the risks of large crowds

Thousands flee Myanmar clashes to China: Beijing

How to stop human-made droughts and floods before they start

WHALES AHOY
Launch of new Galileo navigation quartet

How NASA and John Deere Helped Tractors Drive Themselves

Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

WHALES AHOY
The role of physical environment in the 'broken windows' theory

Scientist uses 'dinosaur crater' rocks, prehistoric teeth to track ancient humans

Genes for speech may not be limited to humans

Traumatic stress shapes the brains of boys and girls in different ways

WHALES AHOY
Asian building boom poses new threat to tigers

Living fossil genome unveiled

X-rays capture unprecedented images of photosynthesis in action

Ethiopian ant shows signs of dominance, poised for global invasion

WHALES AHOY
El Nino conditions in the Pacific precedes dengue fever epidemics

Worrying traces of resistant bacteria in air

Rift Valley Fever epidemic kills at least 32 in Niger

HIV treatment soars, but young African women suffer: UN

WHALES AHOY
Fat lady sings for Chinese rural opera

China to control public smoking nationwide by year-end

Dalai Lama visits Mongolia over China's objections

Eight dead in fighting in Myanmar town on China border

WHALES AHOY
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

WHALES AHOY
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.