Medical and Hospital News  
TECH SPACE
Hydrogen bonds directly detected for the first time
by Staff Writers
Basel, Switzerland (SPX) May 17, 2017


A hydrogen bond forms between a propellane (lower molecule) and the carbon monoxide functionalized tip of an atomic force microscope. The measured forces and the distance between the oxygen atom at the AFM tip and the propellane's hydrogen atoms correspond precisely to the calculations. Credit: University of Basel, Department of Physics

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel's Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are connected to one another via hydrogen atoms, an interaction known as hydrogen bonding. These interactions play an important role in nature, because they are responsible for specific properties of proteins or nucleic acids and, for example, also ensure that water has a high boiling temperature.

To date, it has not been possible to conduct a spectroscopic or electron microscopic analysis of hydrogen and the hydrogen bonds in single molecules, and investigations using atomic force microscopy have also not yielded any clear results.

Dr. Shigeki Kawai, from Professor Ernst Meyer's team at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel, has now succeeded in using a high-resolution atomic force microscope to study hydrogen atoms in individual cyclic hydrocarbon compounds.

Choosing the right molecules for a clear view
In close collaboration with colleagues from Japan, the researchers selected compounds whose configuration resembles that of a propeller. These propellanes arrange themselves on a surface in such a way that two hydrogen atoms always point upwards. If the tip of the atomic force microscope, which is functionalized with carbon monoxide, is brought close enough to these hydrogen atoms, hydrogen bonds are formed that can then be examined.

Hydrogen bonds are much weaker than chemical bonds, but stronger than intermolecular van der Waals interactions. The measured forces and distances between the oxygen atoms at the tip of the atomic force microscope and the propellane's hydrogen atoms correspond very well to the calculations performed by Prof. Adam S. Foster from Aalto University in Finland. They show that the interaction clearly involves hydrogen bonds. The measurements mean that the much weaker van der Waals forces and the stronger ionic bonds can be excluded.

With this study, the researchers from the University of Basel's Swiss Nanoscience Institute network have opened up new ways to identify three-dimensional molecules such as nucleic acids or polymers via observation of hydrogen atoms.

Research Report

TECH SPACE
Researchers invent process to make sustainable rubber, plastics
Newark DE (SPX) May 10, 2017
Synthetic rubber and plastics - used for manufacturing tires, toys and myriad other products - are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities. The scientific team - from the University of Delaware, the Uni ... read more

Related Links
University of Basel
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Hong Kong 'Snowden refugees' face deportation: lawyer

Healthcare bill inspires road rage: Tenn. woman tries to run Congressman off road

New fiber-based sensor could quickly detect structural problems in bridges and dams

Marine Le Pen: far-right firebrand who has shaken up French politics

TECH SPACE
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

TECH SPACE
South African cave yields yet more fossils of a newfound relative

Changes in Early Stone Age tool production have 'musical' ties

Homo naledi's surprisingly young age opens up more questions on where we come from

Modern DNA reveals ancient origins of Indian population

TECH SPACE
Indonesian rangers dismantle traps to save wildlife

Antibiotic-resistant bacteria first emerged at least 450 million years ago

In brain evolution, size matters most of the time

New method of microbial energy production discovered

TECH SPACE
Can crab shells provide a 'green' solution to malaria?

Mosquito-borne viruses like Zika may be spread at lower temperatures

10-year lifespan gain for some HIV patients: study

Stanford researchers analyze what a warming planet means for mosquito-borne diseases

TECH SPACE
China frees human rights lawyer on bail: Amnesty

China lawyer's wife seeks US asylum after brazen escape

China wants its anthem sung, but maybe not at parties

Chinese human rights lawyers seen as enemies of the state

TECH SPACE
UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.