. Medical and Hospital News .




.
NANO TECH
Imperfections may improve graphene sensors
by Staff Writers
Urbana, IL (SPX) Dec 01, 2011

Eric pop.

Although they found that graphene makes very good chemical sensors, researchers at Illinois have discovered an unexpected "twist"-that the sensors are better when the graphene is "worse"-more imperfections improved performance.

"This is quite the opposite of what you would want for transistors, for example," explained Eric Pop, an assistant professor of electrical and computer engineering and a member of the interdisciplinary research team. "Finding that the less perfect they were, the better they worked, was counter intuitive at first."

The research group, which includes researchers from both chemical engineering and electrical engineering, and from a startup company, Dioxide Materials, reported their results in the November 23, 2011 issue of Advanced Materials.

"The objective of this work was to understand what limits the sensitivity of simple, two-terminal graphene chemiresistors, and to study this in the context of inexpensive devices easily manufactured by chemical vapor deposition (CVD)," stated lead authors Amin Salehi-Khojin and David Estrada.

The researchers found that the response of graphene chemiresistors depends on the types and geometry of their defects.

"Nearly-pristine graphene chemiresistors are less sensitive to analyte molecules because adsorbates bind to point defects, which have low resistance pathways around them," noted Salehi-Khojin, a research scientist at Dioxide Materials and post-doctoral research associate in the Department of Chemical and Biomolecular Engineering (ChemE) at Illinois.

"As a result, adsorption at point defects only has a small effect on the overall resistance of the device. On the other hand, micrometer-sized line defects or continuous lines of point defects are different because no easy conduction paths exist around such defects, so the resistance change after adsorption is significant."

"This can lead to better and cheaper gas sensors for a variety of applications such as energy, homeland security and medical diagnostics" said Estrada who is a doctoral candidate in the Department of Electrical and Computer Engineering.

According to the authors, the two-dimensional nature of defective, CVD-grown graphene chemiresistors causes them to behave differently than carbon nanotube chemiresistors. This sensitivity is further improved by cutting the graphene into ribbons of width comparable to the line defect dimensions, or micrometers in this study.

"What we determined is that the gases we were sensing tend to bind to the defects," Pop said. "Surface defects in graphene are either point-, wrinkle-, or line-like. We found that the points do not matter very much and the lines are most likely where the sensing happens."

"The graphene ribbons with line defects appear to offer superior performance as graphene sensors," said ChemE professor emeritus and Dioxide Materials CEO Richard Masel.

"Going forward, we think we may be able engineer the line defects to maximize the material's sensitivity. This novel approach should allow us to produce inexpensive and sensitive chemical sensors with the performance better than that of carbon nanotube sensors."

Pop is also affiliated with the Beckman Institute for Advanced Science and the Micro and Nanotechnology Laboratory at Illinois. Additional authors of the paper, Polycrystalline Graphene Ribbons as Chemiresistors," include Kevin Y. Lin, Myung-Ho Bae, and Feng Xiong. This work was supported by Dioxide Materials, by ONR grants N00014-09-1-0180 and N00014-10-1-0061, and the NDSEG Graduate Fellowship (D.E.).

Related Links
University of Illinois at Urbana-Champaign
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Graphene earns its stripes
London UK (SPX) Dec 01, 2011
Researchers from the London Centre for Nanotechnology (LCN) have discovered electronic stripes, called 'charge density waves', on the surface of the graphene sheets that make up a graphitic superconductor. This is the first time these stripes have been seen on graphene, and the finding is likely to have profound implications for the exploitation of this recently discovered material, which ... read more


NANO TECH
Pakistan flood victims at 'grave risk' 100 days on

Thai minister survives flood censure vote

Japan nuclear plant director sick: company

Misery lingers for Bangkok's 'forgotten' flood victims

NANO TECH
ITT Exelis and Chronos develop offerings for the Interference, Detection and Mitigation market

GMV Supports Successful Launch of Europe's Galileo

In GPS case, US court debates '1984' scenario

Galileo satellites handed over to control centre in Germany

NANO TECH
Scientists Uncover New Role for Gene in Maintaining Steady Weight

Malaysia tribes struggle with modern problems

New evidence of interhuman aggression and human induced trauma 126,000 years ago

Mimicking the brain, in silicon

NANO TECH
Philippine police seize 2,000 geckos from trader

A new model for understanding biodiversity

Traveling is key for survival and conservation

Studying bat skulls, evolutionary biologists discover how species evolve

NANO TECH
China to hold first AIDS Walk on Great Wall

In mice, a step towards a vaccine for HIV

Many Americans with HIV go untreated: study

Global AIDS funding cuts will affect millions: activists

NANO TECH
Chinese panda loan to France kept top secret

China police probe law firm linked to Ai Weiwei

China police question Ai Weiwei's wife

China viewers welcome TV advert ban

NANO TECH
China to launch Mekong patrols next month: report

EU short on anti-piracy ships due to budget cuts

Fighting Pirates with USVs

Somali pirate attacks hit record level

NANO TECH
Outside View: Lackluster jobs report ahead

China manufacturing suffers first fall in 33 months

US Cyber Monday spending hits new high

US economy needs 'more medicine': Obama aide


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement