Medical and Hospital News  
SOLAR DAILY
Impurities boost performance of organic solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jan 07, 2021

illustration only

Sunlight offers a potential solution in the search for an energy source that does not harm the planet, but this depends on finding a way to efficiently turn electromagnetic energy into electricity. Researchers from KAUST have shown how a known herbicide can improve this conversion in organic devices.

While solar cells have traditionally been made from inorganic materials such as silicon, organic materials are starting to break through as an alternative because they are light, flexible and relatively inexpensive to make, even offering the possibility for printable manufacture.

For organic photovoltaics to become a realistic replacement for fossil fuels, they must improve their efficiency when converting the fraction of incident solar energy to electrical energy. Key to achieving this is choosing the right combination of materials.

Ph.D. student Yuanbao Lin and Thomas Anthopoulos have now achieved this by developing "an efficient molecular dopant to improve the performance and stability of organic solar cells," according to Lin.

Most photovoltaic devices have two important elements: an n-type region and a p-region, so called because each region has a net negative and positive electric charge, respectively. These charges can be achieved by adding impurities to the semiconductor. An impurity that creates an n-type material is known as a donor, while an acceptor impurity makes a p-type material.

Lin, Anthopoulos and their team used diquat (C12H12Br2N2) as a molecular donor dopant to enhance the conversion efficiency of high-performance organic solar cells.

The dopant was added to two organic material systems that have previously shown excellent photovoltaic performance. In one case, the power conversion efficiency was improved from 16.7 percent to 17.4 percent, while they were able to attain a maximum efficiency of 18.3 percent in the other. These improvements were possible because the molecular diquat dopant increased both the materials' optical absorption and the lifetime of the electrical charges when light was absorbed.

Like many organic n-type dopants, diquat is reactive in an ambient atmosphere; its lack of stability has prevented its use as a molecular dopant so far. However, the KAUST team were able to develop a process that stably created neutral diquat by electrochemically reducing charged diquat, which is stable in air.

This ability makes diquat a promising choice for the next generation of organic solar cells. "The predicted maximum efficiency of the organic solar cell is around 20 percent," explains Lin. "We will try our best to reach this."

Research paper


Related Links
King Abdullah University Of Science and Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
A polarization-driven guide to making high-performance, versatile solar cells
Incheon, South Korea (SPX) Jan 05, 2021
Improving solar cell design is integral for improving energy consumption. Scientists have lately focused on making solar cells more efficient, flexible, and portable to enable their integration into everyday applications. Consequently, novel lightweight and flexible thin film solar cells have been developed. It is, however, not easy to combine efficiency with flexibility. For a material (usually a semiconductor) to be efficient, it must have a small "band gap"--the energy required to excite charge ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Scores dead in PNG landslide; 10 missing after Norway mudslide; Aid arrives for Croatians

Fukushima nuclear debris removal delayed by virus

Lives cut short: the American children lost to stray bullets

Biden introduces environment team to tackle 'existential threat'

SOLAR DAILY
China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

GMV wins major contracts for Galileo Second Generation ground segment

SOLAR DAILY
Researchers use DNA to track original settlers of Caribbean islands

Over half of Chinese adults now overweight: official

The world's oldest story? Astronomers say global myths about 'seven sisters' stars may reach back 100,000 years

Ancient DNA suggests people from Philippines may have settled Mariana Islands

SOLAR DAILY
Switching DNA functions on and off by means of light

Smugglers jailed as China's 'biggest ever' illegal ivory network smashed

Gut cells alert immune system to invading parasites

Second Taiwan-born panda cub makes media debut

SOLAR DAILY
China confirms first case of UK coronavirus variant

China's first vaccine hustled to market as race to inoculate 1.3bn speeds up

Asian tiger mosquito presents limited risk for Zika virus outbreaks

US begins coronavirus vaccinations for troops in South Korea

SOLAR DAILY
Hong Kong media tycoon Jimmy Lai ordered back to jail

Crowds throng Wuhan, where pandemic began, to celebrate New Year

Pompeo says jailing of activists shows China 'fragile dictatorship'

China jails 10 Hong Kong activists for three years; Two teens returned

SOLAR DAILY
UK police given more time to hold tanker 'hijack' seven

Seven held for attempted hijacking off UK coast

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.