. Medical and Hospital News .




.
TIME AND SPACE
Impurity atoms introduce waves of disorder in exotic electronic material
by Staff Writers
Upton NY (SPX) Oct 21, 2011

In this schematic diagram, individual electrons (white spheres) interact with uranium atoms (shown as yellow and blue f-electron orbitals of the uranium atoms) as they move through the URu2Si2 crystal. These interactions drastically inhibit the progress of the electrons, making them appear to take on extraordinary mass - an effect imaged for the first time in this study.

It's a basic technique learned early, maybe even before kindergarten: Pulling things apart - from toy cars to complicated electronic materials - can reveal a lot about how they work.

"That's one way physicists study the things that they love; they do it by destroying them," said Seamus Davis, a physicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the J.G. White Distinguished Professor of Physical Sciences at Cornell University.

Davis and colleagues recently turned this destructive approach - and a sophisticated tool for "seeing" the effects - on a material they've been studying for its own intrinsic beauty, and for the clues it may offer about superconductivity, the ability of some materials to carry electric current with no resistance.

The findings, published in the Proceedings of the National Academy of Sciences the week of October 17, 2011, reveal how substituting just a few atoms can cause widespread disruption of the delicate interactions that give the material its unique properties, including superconductivity.

The material, a compound of uranium, ruthenium, and silicon, is known as a "heavy-fermion" system. "It's a system where the electrons zooming through the material stop periodically to interact with electrons localized on the uranium atoms that make up the lattice, or framework of the crystal," Davis said.

These stop-and-go magnetic interactions slow down the electrons, making them appear as if they've taken on extra mass, but also contribute to the material's superconductivity.

In 2010*, Davis and a group of collaborators visualized these heavy fermions for the first time using a technique developed by Davis, known as spectroscopic imaging scanning tunneling microscopy (SI-STM), which measures the wavelength of electrons of the material in relation to their energy.

The idea of the present study was to "destroy" the heavy fermion system by substituting thorium for some of the uranium atoms. Thorium, unlike uranium, is non-magnetic, so in theory, the electrons should be able to move freely around the thorium atoms, instead of stopping for the brief magnetic encounters they have at each uranium atom. These areas where the electrons should flow freely are known as "Kondo holes," named for the physicist who first described the scattering of conductive electrons due to magnetic impurities.

Free-flowing electrons might sound like a good thing if you want a material that can carry current with no resistance. But Kondo holes turn out to be quite destructive to superconductivity. By visualizing the behavior of electrons around Kondo holes for the first time, Davis' current research helps to explain why.

"There have been beautiful theories that predict the effects of Kondo holes, but no one knew how to look at the behavior of the electrons, until now," Davis said.

Working with thorium-doped samples made by physicist Graeme Luke at McMaster University in Ontario, Davis' team used SI-STM to visualize the electron behavior.

"First we identified the sites of the thorium atoms in the lattice, then we looked at the quantum mechanical wave functions of the electrons surrounding those sites," Davis said.

The SI-STM measurements bore out many of the theoretical predictions, including the idea proposed just last year by physicist Dirk Morr of the University of Illinois that the electron waves would oscillate wildly around the Kondo holes, like ocean waves hitting a lighthouse.

"Our measurements revealed waves of disturbance in the 'quantum glue' holding the heavy fermions together," Davis said.

So, by destroying the heavy fermions - which must pair up for the material to act as a superconductor - the Kondo holes disrupt the material's superconductivity.

Davis' visualization technique also reveals how just a few Kondo holes can cause such widespread destruction: "The waves of disturbance surrounding each thorium atom are like the ripples that emanate from raindrops suddenly hitting a still pond on a calm day," he said. "And like those ripples, the electronic disturbances travel out quite a distance, interacting with one another. So it takes a tiny number of these impurities to make a lot of disorder."

What the scientists learn by studying the exotic heavy fermion system may also pertain to the mechanism of other superconductors that can operate at warmer temperatures.

"The interactions in high-temperature superconductors are horribly complicated," Davis said. "But understanding the magnetic mechanism that leads to pairing in heavy fermion superconductors - and how it can so easily be disrupted - may offer clues to how similar magnetic interactions might contribute to superconductivity in other materials."

This research was supported by the DOE's Office of Science, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institute for Advanced Research. Additional collaborators included Mohammad Hamidian and Ines Firmo of Brookhaven Lab and Cornell, and Andy Schmidt now at the University of California, Berkeley.

Related Links
DOE/Brookhaven National Laboratory
Understanding Time and Space




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Observing quantum particles in perfect order
Munich, Germany (SPX) Oct 19, 2011
Ultracold atoms in optical lattices have evolved in the last years into an interdisciplinary tool for many-body solid state and quantum physics. But so far only limited possibilities were available to manipulate and to image the quantum gas on a microscopic scale. For the first time a team around Dr. Stefan Kuhr and Professor Immanuel Bloch, Chair of Experimental Physics at LMU Munich and ... read more


TIME AND SPACE
Boeing Delivers 50,000th CSEL Search and Rescue Communications System

A team for an emergency

Fukushima city begins decontamination of homes

Gas blast kills 11 miners in north China: Xinhua

TIME AND SPACE
GIS Technology Plays Critical Role to Aid Joplin Tornado Survivors

Galileo - keeping time with atomic clocks

Factfile on Galileo, Europe's rival to GPS

Soyuz ready with Galileo satellites for milestone launch

TIME AND SPACE
'Generation Squeezed': today's family staggering under the pressure

Blame backbone fractures on evolution, not osteoporosis

Cells are crawling all over our bodies, but how?

Protecting the brain when energy runs low

TIME AND SPACE
Nepal scientists to 'poo-print' tigers

Ohio under pressure to pass wildlife law

Outraged conservationists demand US wildlife laws

Hong Kong's pampered pooches take yoga classes

TIME AND SPACE
Google Earth typhoid maps reveal secrets of disease outbreaks

Disease risk climbs after deadly Central America rains

Intruder virus detected raise the alarm

Hospital superbug debugged

TIME AND SPACE
Immolations spark fear in China's Tibetan Buddhists

US says raising Tibet concerns with China

China vows to make society more accountable

China blames 'Dalai group' for Tibet unrest

TIME AND SPACE
Kenya to pursue kidnappers into Somalia: minister

China urges investigation of Mekong attack

China summons diplomats after deadly Mekong boat raid

13 bodies found after China boat raid: Thai official

TIME AND SPACE
Berlusconi told to fix Italy finances at EU summit

Italian firms fear looming credit crunch

Microsoft profit up on business software demand

Eurozone split over Chinese help in debt crisis


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement