Medical and Hospital News  
SOLAR DAILY
Intensified solar thermochemical CO2 splitting over iron-based perovskite
by Staff Writers
Dalian, China (SPX) Nov 11, 2021

Practical solar fuel production via two-step solar thermochemical CO2 splitting (STCS), a promising method. We demonstrate that FeNi alloy embedded in perovskite substrate enables near complete CO2 splitting and record CO production rate of 381 mL g-1 min-1 (STP). This unprecedented performance is ascribed to stabilization of oxidized Fe cations by in-situ involving into robust perovskite matrix. The thermodynamic analysis predicts a solar-to-fuel efficiency as high as 58% even without any sensitive heat recovery.

Anthropogenic CO2 is the main cause of climate change. There is a pressing need to develop efficient technologies for chemical/fuel production from CO2, ultimately realizing carbon circularity. Among all the various renewable energy solutions, the two-step solar thermochemical CO2-splitting (STCS), exploiting concentrated solar energy of entire solar spectrum to drive redox reactions, shows great promise given its ultra-high theoretical solar-to-fuel efficiency.

Isothermal chemical cycles have been widely explored by exquisite design of redox oxides and varying operating conditions. It was found that the introduction of reducing agents (e.g. hydrogen, methane and biomass) would significantly lower the reduction temperatures of metal oxides to match that of the CO2 splitting process.

In particular, when the reducing agent is methane, the main component of the globally abundant natural gas and shale gas, syngas (mixture of H2 and CO) can be produced as a form of solar fuel.

When coupled with CO2 splitting, such two-step redox scheme has the potential to provide versatile and high quality feedstock for methanol synthesis, acetic acid synthesis and Fischer-Tropsch (F-T) synthesis, all of which play critical roles in a sustainable energy future.

The redox materials, serving as both oxygen carrier and catalyst during the thermochemical cycles, are the key to high performance STCS process. The earth abundant and environmentally benign iron-based oxides have attracted increasing attention due to their low reduction temperature and high oxygen storage capacity. Thus, the development of a new efficient iron-based oxygen carrier for the two-step STCS process is important and urgent.

Recently, a research team led by Prof. Xiaodong Wang from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) reported a novel material consisting of iron-nickel alloy embedded in perovskite substrate for intensified CO production via the two-step STCS process.

The novel material achieves an unprecedented CO production rate of 381 mL g-1 min-1 (STP) with 99% CO2 conversion at 850C, outperforming the state-of-the-art materials. In-situ structural analyses and DFT calculations show that the alloy/substrate interface are the main active sites for CO2 splitting.

The preferential oxidation of FeNi alloy at the interface (as opposed to forming a FeOx passivation shell encapsulating bare metallic iron) and the rapid stabilization of the iron oxide species by the robust perovskite matrix, significantly promotes the conversion of CO2 to CO.

The facile regeneration of the alloy/perovskite interfaces is realized by isothermal methane reduction with simultaneous production of syngas (H2/CO = 2, syngas yield > 96%).

Overall, the novel perovskite-mediated dealloying-exsolution redox system facilitates highly efficient solar fuel production with a theoretical solar-to-fuel efficiency of up to 58% in the absence of any heat integration.

Research paper


Related Links
Dalian Institute of Chemical Physics, Chinese Academy Sciences
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Synergistic effect of solvent and solid additives on morphology optimization of organic solar cells
Suzhou, China (SPX) Nov 08, 2021
Controlling the morphology of photoactive layers towards nanoscale bi-continuous donor/acceptor interpenetrating networks is a key issue to build high-performance organic solar cells (OSCs). Due to the distinct properties between donor and acceptor materials, casting an active layer from a single solvent solution usually results in an either insufficient or excessive phase separation that reduces the device performance. In comparison to the fullerene acceptors with closed-cage structures, no ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Belarus warns Poland against 'provocations,' denies migrant claims

Poland blocks migrants at Belarus border, warns of 'armed' escalation

Hard hit nations demand 'loss and damage' help at COP26

Expert warns on the perils of climate anxiety

SOLAR DAILY
China and Africa will strengthen cooperation on Beidou satellite system

A lab in the sky: Physics experiment in Earth's atmosphere could help improve GPS performance

BeiDou-based monitoring system in operation at world's highest dam

Technologies and concepts for the satellite navigation systems of the future

SOLAR DAILY
Partial skull of Homo naledi child gives new insight into a remarkable species

Rare boomerang collection from South Australia reveals a diverse past

Newly named species of early human could help explain evolutionary gaps

Late persistence of human ancestors at the margins of the monsoon in India

SOLAR DAILY
Weather changes influence prevalence of bacterial diseases in bee colonies

Researchers uncover protein that governs ants' changing social roles

Dogs interpret words, speech patterns the same way as human infants

Dogs help German rail firm sniff out protected species

SOLAR DAILY
Chinese city offers cash for clues in Covid 'people's war'

Chinese journalist jailed over Covid reports 'close to death'

'Stock up', China says, amid new Covid outbreak

Study: Air flow 'dead zones' in public restrooms may boost spread of COVID-19

SOLAR DAILY
China's Communist leaders begin top meet expected to boost Xi

Hong Kong activist becomes youngest convict under security law

Netflix pulls episodes in Philippines over South China Sea map

Three Hong Kong activists plead not guilty over Tiananmen vigil charges

SOLAR DAILY
4 Colombian soldiers killed in latest ambush by drug gang

Four Colombian soldiers killed in 'retaliation' for drug lord's arrest: army

Iran's navy says repulses pirate attack in Gulf of Aden

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.