Medical and Hospital News  
NANO TECH
Intracellular recordings using nanotower electrodes
by Staff Writers
Toyohashi, Japan (SPX) Apr 15, 2016


120um-height 'nanotower' electrode is punching a cell membrane. Silicon growth technology and three-dimensional nano/microfabrication techniques realize such high-aspect-ratio intracellular electrodes. Image courtesy Toyohashi University Of Technology. For a larger version of this image please go here.

Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. For acquiring a large amplitude and a high quality of neuronal signals, intracellular recording is a powerful methodology compared to extracellular recording to measure the voltage or current across the cell membranes.

Nanowire- and nanotube-based devices have been developed for the intracellular recording applications to demonstrate the advantages of these devices having high spatial resolution and high sensitivity.

However, length of these nanowire/nanotube electrode devices is currently limited to less than 10 um due to process issues that occur during fabrication of high-aspect-ratio nanoscale devices, which are more than 10-um long. Thus, conventional nanodevices are not applicable to neurons/cells within thick biological tissues, including brain slices and brain in vivo.

A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed three-dimensional microneed-e-based nanoscale-tipped electrodes (NTEs) that are longer than 100 um.

The needle length exceeds that of the conventional nanowire/nanotube-based intracellular devices, thus expanding the range of applications of nanodevices in intracellular recording, such as deep tissue penetration. Additionally, they perform intracellular recordings using muscle cells.

"A technological challenge in electrophysiology is intracellular recordings within a thick biological tissue. For example, a needle length of more than 40 um is necessary for performing brain slice experiments.

"However, it is almost impossible to penetrate nanoscale diameter needles with a high-aspect-ratio, because of the long hair-like nanostructure that has insufficient stiffness.

"On the other hand, our NTE, which is 120-um-long cone-shaped electrode, has sufficient stiffness to punch tissues and cells", explains the first author PhD candidate, Yoshihiro Kubota.

The leader of the research team, Associate Professor Takeshi Kawano said "Although we demonstrated the preliminary results of our NTE device, the batch fabrication of such intracellular electrodes, which have a needle length more than 100 um, should lead to an advancement in the device technologies.

This will eventually lead to realization of multisite, depth-intracellular recordings for biological tissues, including brain slices and brain in vivo, which are beyond the capability of conventional intracellular devices."

As addressed by the research team, the NTE has the potential to be used in cells that are deep within a biological tissue, including brain slice and brain in vivo, thus accelerating the understanding of the brain.

Yoshihiro Kubota, Hideo Oi, Hirohito Sawahata, Akihiro Goryu, Yoriko Ando, Rika Numano, Makoto Ishida, and Takeshi Kawano (2016). Nanoscale-tipped high-aspect-ratio vertical microneedle electrodes for intracellular recordings,


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Toyohashi University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
'Honeycomb' of nanotubes could boost genetic engineering
Rochester NY (SPX) Apr 13, 2016
Researchers have developed a new and highly efficient method for gene transfer. The technique, which involves culturing and transfecting cells with genetic material on an array of carbon nanotubes, appears to overcome the limitations of other gene editing technologies. The device, which is described in a study published in the journal Small, is the product of a collaboration between resear ... read more


NANO TECH
War games in Greece near Macedonia, Turkey amid migration row

Bringing the landslide laboratory to remote regions

Crane collapse kills 18 in southern China: state media

Pakistan ends search for 23 people trapped by landslide

NANO TECH
Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

China launches 22nd BeiDou navigation satellite

NANO TECH
Study: Electrical brain stimulation enhances creativity

Headdress study highlights ancient hunter-gatherer rituals

The pyrophilic primate

Humans likely delivered diseases to Neanderthals

NANO TECH
Research reveals trend in bird-shape evolution on islands

Uncovering the evolution of queen-worker differences

Wealth of unsuspected new microbes expands tree of life

Selection pressures push plants over adaption cliff

NANO TECH
China detained more than 200 over vaccine scandal

Human genetic research with Chinese characteristics

Co-evolving antivirals aim to keep ahead of fast-changing viruses

Scientists build trap for Zika-transmitting mosquitos

NANO TECH
World's first Tiananmen museum to close doors in Hong Kong

Missing Hong Kong bookseller case unfortunate: China official

Hong Kong pro-democracy protester stands trial

China jails activist who supported Hong Kong protests

NANO TECH
Mexican soldiers detained as torture video surfaces

Pirates abduct six Turkish crew off Nigeria: navy

US, Hong Kong bust huge smuggling operation

10 gang suspects killed in northern Mexico

NANO TECH
China GDP growth slows to 6.7% in first quarter: govt

Dark economic cloud over IMF-World Bank meeting

Panama Papers reveal Hong Kong's murky financial underbelly

IMF sees $1.3 trillion in 'at-risk' Chinese company debt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.