Medical and Hospital News  
MARSDAILY
Iron-Loving Bacteria A Model For Mars Life
by Elizabeth Howell for Astrobiology Magazine
Moffett Field CA (SPX) Nov 09, 2016


An image of recurring slope lineae on Mars, which are believed to represent the movement of briny water on the Red Planet's surface. These areas may be hospitable to microbes. Image courtesy NASA/JPL-Caltech/Univ. of Arizona.

Single-celled microbes are considered a living example of the kind of life that might exist elsewhere in the Universe, as they are able to survive some of the extreme conditions that exist on other worlds. New research on the bacterium Tepidibacillus decaturensis shows that it could be a model organism for what might live on Mars, should any creature inhabit the Red Planet.

This microorganism, found in water more than a mile underground in the Illinois Basin in a formation known as Mount Simon Sandstone, has been shown to be moderately tolerant of heat and salt and able to persist in an anoxic environment. Mars itself is believed to harbor similarly briny surface water without the presence of oxygen.

A paper based on this research, entitled "Tepidibacillus decaturensis sp. nov.: a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from a depth of 1.7 km in the Illinois Basin, USA," was published in the International Journal of Systematic and Evolutionary Microbiology.

The research was led by Yiran Dong, a research scientist at the Carl R. Woese Institute of Genomic Biology, Robert Sanford, a geomicrobiologist and research associate professor at the University of Illinois, Urbana-Champaign, and Bruce W. Fouke, a professor at the University of Illinois, Urbana-Champaign and was co-funded by the NASA Astrobiology Institute and the National Energy Technology Laboratory.

Drilling for CO2 sequestration
The research team piggybacked on drilling activity completed by the Midwest Geological Sequestration Consortium (MGSC), which includes the Illinois State Geological Survey (ISGS) and Archer Daniels Midland (ADM). Supported by the Department of Energy, this project is evaluating locations for storing carbon underground to sequester the enormous volume of CO2 emissions being produced by ADM industrial food production, Sanford explained.

The research team participated in two drill sessions that were completed on the grounds of the ADM facility in Decatur, Illinois. Both wells are within 1,000 feet of one another and clean deep, subsurface groundwater was collected at a variety of depths.The target lithology of the Mount Simon sandstone in this central portion of the Illinois Basin ranges from 1.5 kilometers (0.93 miles) to 2.2 kilometers (1.4 miles) in burial depth. This habitat also happens to have iron oxide minerals coating the sandstone grains, which is also true of much of the surface of Mars.

"There have been some iron-reducers [bacteria] found at deep subsurface environments," Sanford said. "These organisms have respiratory functions for reducing iron; they are reducing iron like we use oxygen. They use ferric iron to breathe."

The bacterium they were studying, however, is a fermentative organism. Another example of this kind of organism is yeast, a fungus that converts sugar to alcohol through enzymes. Tepidibacillus decaturensis does not use iron to breathe, but it uses iron to sustain its metabolism in a very similar fashion to how yeast produce ethanol to sustain theirs.

Further research
The team is analyzing the genomic composition of Tepidibacillus decaturensis. Luckily, they have found another, separate iron-reducing bacterium from the same geological formation called Orenia metallireducens, the first known bacterial species in genus Orenia that reduces ferric to ferrous iron. (A study based on this finding was recently accepted in the journal Applied and Environmental Microbiology.)

The combination of these two iron-reducing bacteria will allow the scientists to conduct comparative studies of their metabolisms and ecology, permitting them to further explore these novel metal-reducing mechanisms. Two iron-dependent organisms in a similar environment provide valuable comparisons to understand how life behaves in these deep, hostile environments.

In previous work published in the journal Genome Announcements earlier in 2016, The team presented the first sequenced genome of Tepidibacillus decaturensis. They found nearly 3,000 protein-coding genes and 52 transfer RNA (tRNA) genes; tRNA is used to decode messenger RNA sequences into proteins.

"We are trying to see whether there are some new [gene] features to set up experiments to test them, and thus explore for the first time the deep evolutionary history of these organisms on Earth and potentially Mars," Dong said of the ongoing work.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
New instrument could search for signatures of life on Mars
Greenbelt MD (SPX) Nov 02, 2016
A sensing technique that the U.S. military currently uses to remotely monitor the air to detect potentially life-threatening chemicals, toxins, and pathogens has inspired a new instrument that could "sniff" for life on Mars and other targets in the solar system - the Bio-Indicator Lidar Instrument, or BILI. Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Gree ... read more


MARSDAILY
China jails 49 over giant explosions

Iraqi investigators examine mass grave site near Mosul

Brazil mine gets safety gear -- too late

Haiti aid hard to come by one month after hurricane

MARSDAILY
Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

MARSDAILY
Evolution purged many Neanderthal genes from human genome

The fate of Neanderthal genes

Ancient human history more complex than previously thought

Europeans and Africans have different immune systems, and neanderthals are partly to thank

MARSDAILY
Fake crane project brings birds back to Britain

Plant roots in the dark see light

Most illegal ivory from recently killed elephants: study

Study highlights a new threat to bees worldwide

MARSDAILY
Ebola adapted to better infect humans during 2013-2016 epidemic

Not 'patient zero': the origins of US AIDS epidemic

Driving mosquito evolution to fight malaria

Tobacco plants engineered to manufacture high yields of malaria drug

MARSDAILY
Gods, breasts and Britney: China artist opens generation gap

Hong Kong's faith in rule of law shaken by China ruling

Hong Kong backs China bid to bar rebel lawmakers

China passes restrictive new film law

MARSDAILY
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

MARSDAILY
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.