Medical and Hospital News  
TIME AND SPACE
Is teleportation possible? Yes, in the quantum world
by Staff Writers
Rochester NY (SPX) Jun 21, 2020

A quantum processor semiconductor chip is connected to a circuit board in the lab of John Nichol, an assistant professor of physics at the University of Rochester. Nichol and Andrew Jordan, a professor of physics, are exploring new ways of creating quantum-mechanical interactions between distant electrons, promising major advances in quantum computing.

"Beam me up" is one of the most famous catchphrases from the Star Trek series. It is the command issued when a character wishes to teleport from a remote location back to the Starship Enterprise.

While human teleportation exists only in science fiction, teleportation is possible in the subatomic world of quantum mechanics--albeit not in the way typically depicted on TV. In the quantum world, teleportation involves the transportation of information, rather than the transportation of matter.

Last year scientists confirmed that information could be passed between photons on computer chips even when the photons were not physically linked.

Now, according to new research from the University of Rochester and Purdue University, teleportation may also be possible between electrons.

In a paper published in Nature Communications and one to appear in Physical Review X, the researchers, including John Nichol, an assistant professor of physics at Rochester, and Andrew Jordan, a professor of physics at Rochester, explore new ways of creating quantum-mechanical interactions between distant electrons. The research is an important step in improving quantum computing, which, in turn, has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors and sensors.

'Spooky Action At A Distance'
Quantum teleportation is a demonstration of what Albert Einstein famously called "spooky action at a distance"--also known as quantum entanglement. In entanglement--one of the basic of concepts of quantum physics--the properties of one particle affect the properties of another, even when the particles are separated by a large distance. Quantum teleportation involves two distant, entangled particles in which the state of a third particle instantly "teleports" its state to the two entangled particles.

Quantum teleportation is an important means for transmitting information in quantum computing. While a typical computer consists of billions of transistors, called bits, quantum computers encode information in quantum bits, or qubits. A bit has a single binary value, which can be either "0" or "1," but qubits can be both "0" and "1" at the same time. The ability for individual qubits to simultaneously occupy multiple states underlies the great potential power of quantum computers.

Scientists have recently demonstrated quantum teleportation by using electromagnetic photons to create remotely entangled pairs of qubits.

Qubits made from individual electrons, however, are also promising for transmitting information in semiconductors.

"Individual electrons are promising qubits because they interact very easily with each other, and individual electron qubits in semiconductors are also scalable," Nichol says. "Reliably creating long-distance interactions between electrons is essential for quantum computing."

Creating entangled pairs of electron qubits that span long distances, which is required for teleportation, has proved challenging, though: while photons naturally propagate over long distances, electrons usually are confined to one place.

Entangled Pairs Of Electrons
In order to demonstrate quantum teleportation using electrons, the researchers harnessed a recently developed technique based on the principles of Heisenberg exchange coupling. An individual electron is like a bar magnet with a north pole and a south pole that can point either up or down.

The direction of the pole--whether the north pole is pointing up or down, for instance--is known as the electron's magnetic moment or quantum spin state. If certain kinds of particles have the same magnetic moment, they cannot be in the same place at the same time. That is, two electrons in the same quantum state cannot sit on top of each other. If they did, their states would swap back and forth in time.

The researchers used the technique to distribute entangled pairs of electrons and teleport their spin states.

"We provide evidence for 'entanglement swapping,' in which we create entanglement between two electrons even though the particles never interact, and 'quantum gate teleportation,' a potentially useful technique for quantum computing using teleportation," Nichol says. "Our work shows that this can be done even without photons."

The results pave the way for future research on quantum teleportation involving spin states of all matter, not just photons, and provide more evidence for the surprisingly useful capabilities of individual electrons in qubit semiconductors.

Research paper


Related Links
University Of Rochester
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Exploring mass dependence in electron-hole clusters
Washington DC (SPX) Jun 19, 2020
In solid materials, when an electron changes position without another to fill its place, a positively charged 'hole' can appear which is attracted to the original electron. In more complex situations, the process can even result in stable clusters of multiple electrons and holes, whose behaviours all depend on each other. Strangely, the masses of each particle inside a cluster can be different to their masses when they are on their own. However, physicists aren't yet entirely clear how these mass ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Parking in a pandemic

Facebook blocks white nationalists organizing move on protests

China says US protests show 'chronic disease' of racism

Virus misinformation fuels panic in Asia

TIME AND SPACE
China's BeiDou navigation enables smarter agricultural production

GPS III SV-08 core mate complete, space vehicle named for NASA Trailblazer

China tests inter-satellite links of BeiDou navigation system

Penultimate BeiDou satellite starts operation in network

TIME AND SPACE
Hunting in savanna-like landscapes may have poured jet fuel on brain evolution

Discovery of oldest bow and arrow technology in Eurasia

US top court in landmark ruling to protect LGBT workers

Tiny songbird is East Asia's 'oldest' carved artwork

TIME AND SPACE
In virus lockdown, Europe's predators regain turf

Giant tortoise Diego, a hero to his species, is home

Hummingbirds see 'nonspectral' colors humans can only imagine

Chinese conservationists battle to save pangolins from poachers

TIME AND SPACE
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

New Zealand military to control borders after virus bungle

TIME AND SPACE
G7 ministers 'strongly urge' China to reconsider Hong Kong law

China extraditions possible under new security law in Hong Kong: advisor

Australian PM 'concerned' over China death sentence for Oz actor

China's foreigner ban leaves global businesses in limbo

TIME AND SPACE
Sweden extradites Chinese 'multi-million-dollar money launderer' to US

Trump orders Pentagon to boost drug interdiction efforts

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.