Medical and Hospital News  
STELLAR CHEMISTRY
K-State study reveals asymmetry in spin directions of galaxies
by Staff Writers
Manhattan KS (SPX) Jun 02, 2020

This image shows an all-sky mollweide map of the quadrupole in the distribution of galaxy spin directions. In this image, the different colors mean different statistical strength of having a cosmological quadrupole at different points in the sky.

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links might suggest that the early universe could have been spinning, according to a Kansas State University study.

Lior Shamir, a K-State computational astronomer and computer scientist, presented the findings at the 236th American Astronomical Society meeting in June 2020. The findings are significant because the observations conflict with some previous assumptions about the large-scale structure of the universe.

Since the time of Edwin Hubble, astronomers have believed that the universe is inflating with no particular direction and that the galaxies in it are distributed with no particular cosmological structure. But Shamir's recent observations of geometrical patterns of more than 200,000 spiral galaxies suggest that the universe could have a defined structure and that the early universe could have been spinning. Patterns in the distribution of these galaxies suggest that spiral galaxies in different parts of the universe, separated by both space and time, are related through the directions toward which they spin, according to the study.

"Data science in astronomy has not just made astronomy research more cost-effective, but it also allows us to observe the universe in a completely different way," said Shamir, also a K-State associate professor of computer science. "The geometrical pattern exhibited by the distribution of the spiral galaxies is clear, but can only be observed when analyzing a very large number of astronomical objects."

A spiral galaxy is a unique astronomical object because its visual appearance depends on the observer's perspective. For instance, a spiral galaxy that spins clockwise when observed from Earth, would seem to spin counterclockwise when the observer is located in the opposite side of that galaxy. If the universe is isotropic and has no particular structure - as previous astronomers have predicted - the number of galaxies that spin clockwise would be roughly equal to the number of galaxies that spin counterclockwise. Shamir used data from modern telescopes to show that this is not the case.

With traditional telescopes, counting galaxies in the universe is a daunting task. But modern robotic telescopes such as the Sloan Digital Sky Survey, or SDSS, and the Panoramic Survey Telescope and Rapid Response System, or Pan-STARRS, are able to image many millions of galaxies automatically as they survey the sky. Machine vision can then sort millions of galaxies by their spin direction far faster than any person or group of people.

When comparing the number of galaxies with different spin directions, the number of galaxies that spin clockwise is not equal to the number of galaxies that spin counterclockwise. The difference is small, just over 2%, but with the high number of galaxies, there is a probability of less than 1 to 4 billion to have such asymmetry by chance, according to Shamir's research.

The patterns span over more than 4 billion light-years, but the asymmetry in that range is not uniform. The study found that the asymmetry gets higher when the galaxies are more distant from Earth, which shows that the early universe was more consistent and less chaotic than the current universe.

But the patterns do not just show that the universe is not symmetric, but also that the asymmetry changes in different parts of the universe, and the differences exhibit a unique pattern of multipoles.

"If the universe has an axis, it is not a simple single axis like a merry-go-round," Shamir said. "It is a complex alignment of multiple axes that also have a certain drift."

The concept of cosmological multipoles is not new. Previous space-based observatories - such as the Cosmic Background Explorer, or COBE, satellite; the Wilkinson Microwave Anisotropy Probe, or WMAP mission; and the Planck observatory - showed that the cosmic microwave background, which is electromagnetic radiation from the very early universe, also exhibits multiple poles.

But the measurement of the cosmic microwave background is sensitive to foreground contamination - such as the obstruction of the Milky Way - and cannot show how these poles changed over time. The asymmetry between spin directions of spiral galaxies is a measurement that is not sensitive to obstruction. What can obstruct galaxies spinning in one direction in a certain field will necessarily also obstruct galaxies spinning in the opposite way.

"There is no error or contamination that could exhibit itself through such unique, complex and consistent patterns," Shamir said. "We have two different sky surveys showing the exact same patterns, even when the galaxies are completely different. There is no error that can lead to that. This is the universe that we live in. This is our home."


Related Links
Kansas State University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Mergers between galaxies trigger activity in their core
Groningen, Netherlands (SPX) May 29, 2020
Active galactic nuclei (AGNs) play a major role in galaxy evolution. Astronomers from the University of Groningen and Netherlands Institute for Space Research have now used a record-sized sample of galaxies to confirm that galaxy mergers have a positive effect on igniting AGNs. They were able to compile about ten times more images of merging galaxies than previous studies by using a machine-learning algorithm. The results were published on 27 May in the journal Astronomy and Astrophysics. On ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
China says US protests show 'chronic disease' of racism

Some 50 world leaders call for post-pandemic cooperation

Virus misinformation fuels panic in Asia

Heat, water woes and coronavirus: India's perfect storm

STELLAR CHEMISTRY
Harnessing space to save lives at sea

Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

STELLAR CHEMISTRY
Information technology played key role in growth of ancient civilizations

Women with Neandertal gene give birth to more children

Similar to humans, chimpanzees develop slowly

Chimpanzees help trace the evolution of human speech back to ancient ancestors

STELLAR CHEMISTRY
Bumblebees nibble the leaves of flowers to trick them into flowering early

New sampling method allows scientists to observe cellular changes over time

Territorial aggression between bird species more common than thought

Botswana probes mysterious death of 12 elephants

STELLAR CHEMISTRY
Poor and black, northeast Brazil faces virus 'hurricane'

Pope prays for Amazonians so 'vulnerable' to the coronavirus

Japan lifts emergency, India domestic flights resume

China virus city in transport shutdown as WHO delays decision

STELLAR CHEMISTRY
UK ex-foreign ministers call for G7 Hong Kong monitor group

Trump strips Hong Kong privileges, curbs students in volley on China

Xinjiang vice chairman faces anti-graft investigation

Hong Kong police ban Tiananmen vigil for first time in 30 years

STELLAR CHEMISTRY
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.