. Medical and Hospital News .




NANO TECH
King's College London finds rainbows on nanoscale
by Staff Writers
London, UK (SPX) Nov 23, 2012


Researchers at King's College London discovered how to separate colors and create "rainbows" using nanoscale structures on a metal surface. This may lead to improved solar cells, TV screens and photo detectors.Credit: Dr. Jean-Sebastien Bouillard, Dr. Ryan McCarron.

New research at King's College London may lead to improved solar cells and LED-displays. Researchers from the Biophysics and Nanotechnology Group at King's, led by Professor Anatoly Zayats in the department of Physics have demonstrated in detail how to separate colours and create 'rainbows' using nanoscale structures on a metal surface. The research is published in Nature's Scientific Reports.

More than 150 years ago, the discovery at King's of how to separate and project different colours, paved the way for modern colour televisions and displays. The major challenge for scientists in this discipline nowadays is the manipulation of colour at the nanoscale.

This capability will have important implications for imaging and spectroscopy, sensing of chemical and biological agents and may lead to improved solar cells, flat-screen tv's and displays.

Researchers at King's were able to trap light of different colours at different positions of a nanostructured area, using especially designed nanostructures.

Depending on the geometry of the nanostructure, a trapped rainbow could be created on a gold film that has the dimension on the order of a few micrometers - about 100 times smaller than the width of a human hair.

Professor Zayats explained: 'Nanostructures of various kinds are being considered for solar cell applications to boost light absorption efficiency.

"Our results mean that we do not need to keep solar cells illuminated at a fixed angle without compromising the efficiency of light coupling in a wide range of wavelengths. When used in reverse for screens and displays, this will lead to wider viewing angles for all possible colours.'

The big difference to natural rainbows - where red always appears on the outer side and blue on the inner side - is that in the created nanostructures the researchers were able to control where the rainbow colours would appear by controlling the nanostructures' parameters.

On top of this, they discovered that it is possible to separate colours on different sides of the nanostructures.

Co-author Dr Jean-Sebastien Bouillard from King's said: 'The effects demonstrated here will be important to provide 'colour' sensitivity in infrared imaging systems for security and product control. It will also enable the construction of microscale spectrometers for sensing applications.'

The ability to couple light to nanostructures with multicolour characteristics will be of major importance for light capturing devices in a huge range of applications, from light sources, displays, photo detectors and solar cells to sensing and light manipulation in optical circuits for tele- and data communications.

Paper title: 'Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp'.

.


Related Links
King's College London
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Controlling heat flow through a nanostructure
Cambridge, MA (SPX) Nov 23, 2012
Thermoelectric devices, which can harness temperature differences to produce electricity, might be made more efficient thanks to new research on heat propagation through structures called superlattices. The new findings show, unexpectedly, that heat can travel like waves, rather than particles, through these nanostructures: materials made up of layers only a few billionths of a meter in thicknes ... read more


NANO TECH
Victims of Hurricane Sandy forgotten in Haiti

European reconstruction bank admits Kosovo

Post-storm, New Yorkers love Bloomberg - and Chris Christie

Victims of Hurricane Sandy forgotten in Haiti

NANO TECH
Lockheed Martin Completes Critical Environmental Test on GPS III Pathfinder

Roscosmos Requests Glonass Project Contractor Head's Dismissal

Mobile GPS Tracking capability on JCB ruggedized mobile phones

Quattro Group Gains Visibility And Control With Ctrack

NANO TECH
A 3-D light switch for the brain

Scientists improve dating of early human settlement

Oldest home in Scotland unearthed

Archaeologists identify spear tips used in hunting a half-million years ago

NANO TECH
Research finds evidence of a 'mid-life crisis' in great apes

Ecuador's Lonesome George wasn't lonely after all

Boring work: Wormhole sleuth peeks into ancient beetle history

Singapore gets dolphins after tussle with activists

NANO TECH
G.Bissau warns AIDS patients without treatment since coup

Baiting Mosquitoes with Knowledge and Proven Insecticides

Scientists question the designation of some emerging diseases

UN hails sharp decline in HIV infections in kids

NANO TECH
China angst over runaway boys' deaths

Two detained in China for 'inciting unrest' online

China names new leaders for Shanghai, Chongqing

China frees jailed opponent of Bo Xilai

NANO TECH
Piracy will swell again if seas not policed: S.African Navy

Mekong River attackers get death sentences

West African pirates target oil tankers

Pirate killed off Somali coast: NATO

NANO TECH
China manufacturing grows in November: HSBC

Walker's World: UK survives EU budget row

Reforms needed for China growth: premier-to-be Li

China manufacturing grows in November: HSBC




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement