Medical and Hospital News  
TIME AND SPACE
Laser technique enables powerful smaller particle accelerators
by Staff Writers
Rochester NY (SPX) Apr 06, 2020

Illustration depicting the method outline by LLE researchers to shape intense laser light in a way that accelerates electrons to record energies in very short distances. An ultrashort pulse (yellow) propagating to the right and reflecting from a radial echelon (right most element) controls the time at which each ring comes to focus after reflecting from an axiparabolla (left most element).

By observing electrons that have been accelerated to extremely high energies, scientists are able to unlock clues about the particles that make up our universe.

Accelerating electrons to such high energies in a laboratory setting, however, is challenging: typically, the more energetic the electrons, the bigger the particle accelerator. For instance, to discover the Higgs boson - the recently observed "God particle," responsible for mass in the universe - scientists at the CERN laboratory in Switzerland used a particle accelerator nearly 17 miles long.

But what if there was a way to scale down particle accelerators, producing high-energy electrons in a fraction of the distance?

In a paper published in Physical Review Letters, scientists at the University of Rochester's Laboratory for Laser Energetics (LLE) outlined a method to shape intense laser light in a way that accelerates electrons to record energies in very short distances: the researchers estimate the accelerator would be 10,000 times smaller than a proposed setup recording similar energy, reducing the accelerator from nearly the length of Rhode Island to the length of a dining room table.

With such a technology, scientists could perform tabletop experiments to probe the Higgs boson or explore the existence of extra dimensions and new particles that could lead to Albert Einstein's dream of a grand unified theory of the universe.

"The higher energy electrons are required to study fundamental particle physics," says John Palastro, a scientist at the LLE and the paper's lead author. "Electron accelerators provide a looking glass into a sub-atomic world inhabited by the fundamental building blocks of the universe."

While this research is currently theoretical, the LLE is working to make it a reality through plans to construct the highest-powered laser in the world at the LLE. The laser, to be named EP-OPAL, will allow the researchers to create the extremely powerful sculpted light pulses and technology described in this paper.

The electron accelerator outlined by the researchers relies on a revolutionary technique for sculpting the shape of laser pulses so that their peaks can travel faster than the speed of light.

"This technology could allow electrons to be accelerated beyond what is possible with current technologies," says Dustin Froula, a senior scientist at the LLE and one of the paper's authors.

In order to sculpt the laser pulses, the researchers developed a novel optic setup resembling a circular amphitheater with wavelength-sized "steps" used to create a time delay between concentric rings of light delivered from a high-power laser.

A typical lens focuses each ring of light from a laser to a single distance from the lens, forming a single spot of high-intensity light. Instead of using a typical lens, however, the researchers use an exotically shaped lens, which allows them to focus each ring of light to a different distance from the lens, creating a line of high intensity rather than a single spot.

When this sculpted light pulse enters a plasma - a hot soup of freely moving electrons and ions - it creates a wake, similar to the wake behind a motorboat. This wake propagates at the speed of light. Much like a water skier riding in a boat's wake, the electrons then accelerate as they ride the wake of the sculpted laser light pulses.

These "laser wakefield accelerators" (LWFA) were first theorized nearly 40 years ago, and were advanced by the invention of chirped-pulse amplification (CPA), a technique developed at the LLE by 2018 Nobel Prize recipients Donna Strickland and Gerard Mourou.

Previous versions of LWFA, however, used traditional, unstructured light pulses that propagated more slowly than the speed of light, which meant the electrons would outrun the wake, limiting their acceleration. The new sculpted light pulses enable faster-than-light speeds so electrons can ride the wake indefinitely and be continually accelerated.

"This work is extremely innovative and would be a game changer for laser-accelerators," says Michael Campbell, director of the LLE. "This research shows the value of theoretical and experimental plasma physics working closely together with outstanding laser scientists and engineers - it represents the best of the culture of LLE."

Research paper


Related Links
University Of Rochester
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Does relativity lie at the source of quantum exoticism?
Warsaw, Poland (SPX) Apr 03, 2020
Since its beginnings, quantum mechanics hasn't ceased to amaze us with its peculiarity, so difficult to understand. Why does one particle seem to pass through two slits simultaneously? Why instead of specific predictions can we only talk about evolution of probabilities? According to theorists from universities in Warsaw and Oxford, the most important features of the quantum world may result from the special theory of relativity, which until now seemed to have little to do with quantum mechanics. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Hong Kong starts standing down riot police after budget hike

Under-fire Trump defends coronavirus response

Hong Kong to give big cash handouts as economy reels from virus

Coronavirus outbreak fuels China black market for supplies

TIME AND SPACE
Contingency Operations Program and GPS III SV02 Receives Operational Acceptance from USSF

Calling for GNSS apps to support COVID-19 emergency response and recovery

Small, precise and affordable gyroscope for navigating without GPS

Chinese smartphone-maker debuts device with embedded ISRO navigation system

TIME AND SPACE
Nextdoor, the network for neighbors, grows in age of social distancing

Long-overlooked arch is key to fuction, evolution of human foot

Analysis reveals prehistoric migration from Africa, Asia, Europe to Mediterranean

Neanderthals were eating mussels, fish, seals 80K years ago

TIME AND SPACE
Bushfire smoke killed endangered Aussie mice far from blazes

Nearly 50 rhinos killed in Botswana in 10 months as poaching surges

Study: To curb biodiversity declines, protect land in the tropics

Why coronavirus could help save China's endangered species

TIME AND SPACE
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Japan PM calls for nationwide closure of schools over virus

TIME AND SPACE
China sentences Swedish bookseller Gui Minhai to 10 years' jail

'I feel nothing': virus-stricken Wuhan buries its dead

Virus puts Hong Kong's 'McRefugees' back on streets

Beijing says Chinese professor confessed to spying

TIME AND SPACE
In Colombia, fleet of cartel narco-subs poses challenge for navy

Four Chinese sailors kidnapped in Gabon are free

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.