Medical and Hospital News  
TIME AND SPACE
Laser-wielding physicists seize control of atoms' behavior
by Staff Writers
Chicago IL (SPX) Oct 07, 2015


This image shows how a laser (yellow) can affect collisions between atoms (red spheres). The blue spheres depict a molecule. The laser leaves the energy of single atoms unaffected, as represented by the red surface. But the laser lowers the energy of the molecules, leading to the cup-shape of the blue surface. The stronger the laser, the more the two atoms attract each other if they collide inside the laser beam. Image courtesy Chin Group/University of Chicago. For a larger version of this image please go here.

Physicists have wondered in recent years if they could control how atoms interact using light. Now they know that they can, by demonstrating games of quantum billiards with unusual new rules.

In an article published in the Oct. 5 issue of Physical Review Letters, a team of University of Chicago physicists explains how to tune a laser to make atoms attract or repel each other in an exotic state of matter called a Bose-Einstein condensate.

"This realizes a goal that has been pursued for the past 20 years," said Cheng Chin, professor in physics at the University of Chicago, who led the team. "This exquisite control over interactions in a many-body system has great potential for the exploration of exotic quantum phenomena and engineering of novel quantum devices."

Many research groups in the United States and Europe have tried various ideas over the last decade. It was Logan Clark, a graduate student in Chin's group, who came up with the first practical solution. He has now demonstrated the idea in the lab with cesium atoms chilled to temperatures just billionths of a degree above absolute zero, and the technique can be widely applied to other atomic species.

Clark compared the process to a billiards game, when one ball encounters another. "Normally, as soon as the surfaces touch, the balls repel each other and bounce away," Clark said. In Chin's lab, cesium atoms replace the billiard balls, and ordinarily they repel each other when they collide. But by turning up the laser while operating at a "magic" wavelength, Clark showed that the repulsion between atoms can be converted into attraction.

"The atoms exhibit fascinating behavior in this system," he said. By exposing different parts of the sample to different laser intensities, "We can choose to make the atoms attract or repel each other, or pass right through each other without colliding."

Alternatively, by oscillating their interactions, analogous to making the billiard balls rapidly grow and shrink while they roll, the atoms stick to each other in pairs.

The researchers explained two fundamental ways that lasers influence the atomic motion. One is to create potentials, like a bump or valley on the billiard table, proportional to laser intensity. The new way is to alter how billiard balls collide.

"We want our laser to control collisions, but we don't want it to create any hills or valleys," Clark said. When the laser is tuned to a "magic wavelength," the beam creates no hills or valleys, but only affects collisions.

"This is because the magic wavelength happens to be in between two excited states of the atom, so they 'magically' cancel each other out," he said.

Magic is a concept that has no place in science, though the word does enjoy fairly common use among atomic physicists. "Generally it is used to refer to a wavelength at which two effects cancel or are equal, in particular when this cancellation or equality is useful for some technological goal," Clark said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Scientists present, discuss latest data from experiments smashing nuclei
Kobe, Japan (SPX) Oct 07, 2015
Scientists intent on unraveling the mystery of the force that binds the building blocks of visible matter are gathered in Kobe, Japan, this week to present and discuss the latest results from "ultrarelativistic nucleus-nucleus collisions." Known more colloquially as Quark Matter 2015, the conference convenes scientists studying smashups of nuclei traveling close to the speed of light at th ... read more


TIME AND SPACE
US Coast Guard to suspend search for 'El Faro' survivors

America's children in crossfire of gun control debate

Merkel declares EU asylum rules 'obsolete' as navies tackle smugglers

Obama apologizes to MSF for deadly Kunduz air strike

TIME AND SPACE
GPS III Launch Services RFP Released by Air Force

Galileo satellites handed over to operator

New sports technology provides a GPS alternative

Russia, Brazil Sign Contract for Glonass Ground Measuring Station

TIME AND SPACE
Our brain's secrets to success

Woman sits dead for hours in Hong Kong McDonald's

2-million-year-old fossils reveal hearing abilities of early humans

How to find out about the human mind through stone

TIME AND SPACE
Chinese team now develops a better understanding of microbes in the air

Sneezing monkey, 'walking' fish found in Himalayas: WWF

Study sheds light on powerful process that turns food into energy

Conservationists: Smog disrupting migratory birds in Malaysia

TIME AND SPACE
Cholera cases in Iraq top 1,200: ministry

Trio win Nobel Medicine Prize for parasite therapies

Chip-based technology enables reliable direct detection of Ebola virus

Bacteria in ancient flea may be ancestor of the Black Death

TIME AND SPACE
China probing provincial governor for graft: state media

Hong Kong former leader charged over corruption

Dalai Lama brushes off health fears after cancelling US tour

Protesters gather in Hong Kong a year since mass rallies

TIME AND SPACE
Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

TIME AND SPACE
China faces 'unprecedented' economic policy challenge: IMF

IMF gloomy on world economy as China slows

World Bank trims Asia forecast but says no China hard landing

China appetite for pricey contemporary art 'suddenly evaporates'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.