Medical and Hospital News  
TECH SPACE
Lehigh scientists fabricate a new class of crystalline solid
by Staff Writers
Bethlehem PA (SPX) Nov 08, 2016


This image shows the results of scanning X-ray microdiffraction (uSXRD) with submicron spatial resolution. Laue diffraction (a) from an unconstrained Sb2S3 single crystal (top) and laser fabricated RLS crystal Sb2S3 (bottom). Magnified images (b) of selected reflection (852) extracted from Laue patterns (a, bottom) obtained for different points of the RLS crystal (c). Image courtesy D. Savytskii, H. Jain, N. Tamura and V. Dierolf. For a larger version of this image please go here.

Scientists at Lehigh University, in collaboration with Lawrence Berkeley National Laboratory, have demonstrated the fabrication of what they call a new class of crystalline solid by using a laser heating technique that induces atoms to organize into a rotating lattice without affecting the macroscopic shape of the solid.

By controlling the rotation of the crystalline lattice, the researchers say they will be able to make a new type of synthetic single crystals and "bio-inspired" materials that mimic the structure of special biominerals and their superior electronic and optical properties as well.

The group reported its findings on Nov. 3 in Scientific Reports, a Nature journal, in an article titled "Rotating lattice single crystal architecture on the surface of glass." The paper's lead author is Dmytro Savytskii, a research scientist in the department of materials science and engineering at Lehigh.

The other authors are Volkmar Dierolf, distinguished professor and chair of the department of physics at Lehigh; Himanshu Jain, the T.L. Diamond Distinguished Chair in Engineering and Applied Science and professor of materials science and engineering at Lehigh; and Nobumichi Tamura of the Lawrence Berkeley National Lab in Berkeley, California.

The development of the rotating lattice single (RLS) crystals follows a discovery reported in March in Scientific Reports in which the Lehigh group demonstrated for the first time that a single crystal could be grown from glass without melting the glass.

In a typical crystalline solid, atoms are arranged in a lattice, a regularly repeating, or periodic three-dimensional structure. When viewed from any angle--left to right, up and down, front to back--a crystal-specific periodicity becomes evident. Glass, by contrast, is an amorphous material with a disordered atomic structure.

Because they have no grain boundaries between interconnecting crystals, single-crystal materials often possess exceptional mechanical, optical and electrical properties. Single crystals give diamonds their brilliance and jet turbine blades their resistance to mechanical forces. And the single crystal of silicon of which a silicon chip is made gives it superior conducting properties that form the basis for microelectronics.

The periodicity, or repeating pattern, in a rotating lattice single crystal, said Jain and Dierolf, differs from the periodicity in a typical single crystal.

"We have found that when we grow a crystal out of glass," said Jain, "the periodicity does not result the some way. In one direction, it looks perfect, but if you turn the lattice and look at it from a different angle, you see that the whole structure is rotating."

"In a typical single-crystal material," said Dierolf, "once I figure out how the pattern repeats, then, if I know the precise location of one atom, I can predict the precise location of every atom. This is possible only because single crystals possess a long-range order.

"When we grow an RLS crystal out of glass, however, we have found that the periodicity does not result the some way. To predict the location of every atom, I have to know not just the precise location of a particular atom but the rotation angle of the lattice as well.

"Thus, we have to slightly modify the textbook definition of single crystals."

The rotation, said Jain, occurs at the atomic scale and does not affect the shape of the glass material. "Only the string of atoms bends, not the entire material. We can see the bending of the crystal lattice with x-ray diffraction."

To achieve this rotation, the researchers heat a very small portion of the surface of a solid glass material with a laser, which causes the atoms to become more flexible.

"The atoms want to arrange in a straight line but the surrounding glass does not allow this," said Jain. "Instead, the glass, being completely solid, forces the configuration of the atoms to bend. The atoms move and try to organize in a crystalline lattice, ideally in a perfect single crystal, but they cannot because the glass prevents the perfect crystal from forming and forces the atoms to arrange in a rotational lattice. The beauty is that the rotation occurs smoothly on the micrometer scale.

"Our laser imposes a degree of asymmetry on the growth of the crystal. We control the asymmetry of the heating source to impose this rotational pattern on the atoms."

The group's ability to control the amount of heating is critical to the formation of the rotating lattice, said Jain.

"The key to the creation of the rotating atomic lattice is that it occurs without melting the glass. Melting allows too much freedom of atomic movement, which makes it impossible to control the organization of the lattice.

"Our subtle way of heating the glass overcomes this. We heat only the surface of the glass, not inside. This is very precise, very localized heating. It causes only a limited movement of the atoms, and it allows us to control how the atomic lattice will bend."

Rotating lattices have been observed in certain biominerals in the ocean, said Jain and Dierolf, and it may also occur on a very small scale in some natural minerals as spherulites.

"But no one had previously made this on a larger scale in a controlled way, which we have accomplished with the asymmetrical imposition of a laser to cause the rotating lattice," said Jain.

"Scientists were not able to understand this phenomenon before because they could not observe it on a large enough scale. We are the first group to induce this to happen on an effectively unlimited dimension with a laser."

Jain and Dierolf and their group are planning further studies to improve their ability to manipulate the ordering of the atoms.

The researchers performed the laser heating of the glass at Lehigh and characterized the glass with micro x-ray diffraction on a synchrotron at the Lawrence Berkeley National Lab. They plan to perform further characterization at Berkeley and with electron microscopy at Lehigh.

The project has been funded for six years by the U.S. Department of Energy.

"This is a novel way of making single crystals," said Dierolf. "It opens a new field by creating a material with unique, novel properties."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lehigh University
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Why buoyant spheres don't always leap out of the water
Logan UT (SPX) Nov 07, 2016
It's a common swimming pool game: Force a buoyant ball underwater and let it go. The ball springs to the surface and jumps into the air. But, submerge the ball deeper underwater and the effect is often disappointing. Contrary to our intuition, increasing the release depth often leads to a decreased pop-up height. This simple fluid dynamics question has puzzled physicists for decades, but a ... read more


TECH SPACE
China jails 49 over giant explosions

Iraqi investigators examine mass grave site near Mosul

Brazil mine gets safety gear -- too late

Haiti aid hard to come by one month after hurricane

TECH SPACE
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

TECH SPACE
Evolution purged many Neanderthal genes from human genome

The fate of Neanderthal genes

Ancient human history more complex than previously thought

Europeans and Africans have different immune systems, and neanderthals are partly to thank

TECH SPACE
Fake crane project brings birds back to Britain

Plant roots in the dark see light

Most illegal ivory from recently killed elephants: study

Study highlights a new threat to bees worldwide

TECH SPACE
Ebola adapted to better infect humans during 2013-2016 epidemic

Not 'patient zero': the origins of US AIDS epidemic

Driving mosquito evolution to fight malaria

Tobacco plants engineered to manufacture high yields of malaria drug

TECH SPACE
Gods, breasts and Britney: China artist opens generation gap

Hong Kong's faith in rule of law shaken by China ruling

Hong Kong backs China bid to bar rebel lawmakers

China passes restrictive new film law

TECH SPACE
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

TECH SPACE
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.