Medical and Hospital News  
EARLY EARTH
Life could have emerged from lakes with high phosphorus
by Staff Writers
Seattle WA (SPX) Jan 07, 2020

Eastern California's Mono Lake has no outflow, allowing salts to build up over time. The high salts in this carbonate-rich lake can grow into pillars.

Life as we know it requires phosphorus. It's one of the six main chemical elements of life, it forms the backbone of DNA and RNA molecules, acts as the main currency for energy in all cells and anchors the lipids that separate cells from their surrounding environment.

But how did a lifeless environment on the early Earth supply this key ingredient?

"For 50 years, what's called 'the phosphate problem,' has plagued studies on the origin of life," said first author Jonathan Toner, a University of Washington research assistant professor of Earth and space sciences.

The problem is that chemical reactions that make the building blocks of living things need a lot of phosphorus, but phosphorus is scarce. A new UW study, published Dec. 30 in the Proceedings of the National Academy of Sciences, finds an answer to this problem in certain types of lakes.

The study focuses on carbonate-rich lakes, which form in dry environments within depressions that funnel water draining from the surrounding landscape. Because of high evaporation rates, the lake waters concentrate into salty and alkaline, or high-pH, solutions. Such lakes, also known as alkaline or soda lakes, are found on all seven continents.

The researchers first looked at phosphorus measurements in existing carbonate-rich lakes, including Mono Lake in California, Lake Magadi in Kenya and Lonar Lake in India.

While the exact concentration depends on where the samples were taken and during what season, the researchers found that carbonate-rich lakes have up to 50,000 times phosphorus levels found in seawater, rivers and other types of lakes. Such high concentrations point to the existence of some common, natural mechanism that accumulates phosphorus in these lakes.

Today these carbonate-rich lakes are biologically rich and support life ranging from microbes to Lake Magadi's famous flocks of flamingoes. These living things affect the lake chemistry. So researchers did lab experiments with bottles of carbonate-rich water at different chemical compositions to understand how the lakes accumulate phosphorus, and how high phosphorus concentrations could get in a lifeless environment.

The reason these waters have high phosphorus is their carbonate content. In most lakes, calcium, which is much more abundant on Earth, binds to phosphorus to make solid calcium phosphate minerals, which life can't access. But in carbonate-rich waters, the carbonate outcompetes phosphate to bind with calcium, leaving some of the phosphate unattached. Lab tests that combined ingredients at different concentrations show that calcium binds to carbonate and leaves the phosphate freely available in the water.

"It's a straightforward idea, which is its appeal," Toner said. "It solves the phosphate problem in an elegant and plausible way."

Phosphate levels could climb even higher, to a million times levels in seawater, when lake waters evaporate during dry seasons, along shorelines, or in pools separated from the main body of the lake.

"The extremely high phosphate levels in these lakes and ponds would have driven reactions that put phosphorus into the molecular building blocks of RNA, proteins, and fats, all of which were needed to get life going," said co-author David Catling, a UW professor of Earth and space sciences.

The carbon dioxide-rich air on the early Earth, some four billion years ago, would have been ideal for creating such lakes and allowing them to reach maximum levels of phosphorus. Carbonate-rich lakes tend to form in atmospheres with high carbon dioxide. Plus, carbon dioxide dissolves in water to create acid conditions that efficiently release phosphorus from rocks.

"The early Earth was a volcanically active place, so you would have had lots of fresh volcanic rock reacting with carbon dioxide and supplying carbonate and phosphorus to lakes," Toner said. "The early Earth could have hosted many carbonate-rich lakes, which would have had high enough phosphorus concentrations to get life started."

Another recent study by the two authors showed that these types of lakes can also provide abundant cyanide to support the formation of amino acids and nucleotides, the building blocks of proteins, DNA and RNA. Before then researchers had struggled to find a natural environment with enough cyanide to support an origin of life. Cyanide is poisonous to humans, but not to primitive microbes, and is critical for the kind of chemistry that readily makes the building blocks of life.


Related Links
University of Washington
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Bone analysis shows small T. rexes were kids, not distinct genus
Washington (UPI) Jan 2, 2020
Small Tyrannosaurus rexes do not represent a distinct dinosaur genus, according to fresh analysis of thinly sliced bones. Authors of a new study, published this week in the journal Science Advances, claim the shrunken specimens are juvenile T. rexes. Tyrannosaurus rexes are famous for their size and, for decades, fossil hunters and museums have prioritized the largest specimens. For this reason, and the simple fact that smaller fossils are more fragile and harder to find, scientists know ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Japan could release Fukushima radioactive water into environment

Survival surfing: Indonesians riding the waves to beat tsunami trauma

Scientists call for effort to end destruction of terrestrial ecosystems

Fukushima clean-up reduces radiation levels, but not all

EARLY EARTH
China Focus: China to complete Beidou-3 satellite system in 2020

China's Beidou navigation system to provide unique services

Satnav watching over rugby players

US Congress green lights India's NavIC as regional satellite navigation system

EARLY EARTH
Territorial conflicts suppress female chimpanzees' reproductive success

Chimpanzees likely to share tools, teach skills when task is more complex

Emerging from obscurity: 2019's unforeseen history-makers

Unearthing the mystery of the meaning of Easter Island's Moai

EARLY EARTH
Nepal elephant festival scrutinised for beauty and bruises

How grizzly bears prevent muscle atrophy during hibernation

Australia's 'insurance' koala population halved by bushfires

Vietnam seizes two tonnes of ivory and pangolin scales

EARLY EARTH
China probes mystery pneumonia outbreak amid SARS fears

Mosquitoes can sense toxins through their legs

China rules out SARS in mystery viral pneumonia outbreak

Researchers say may have found cause of mad cow disease

EARLY EARTH
China detains activists in year-end crackdown

Single Chinese woman sues over egg freezing

Dozens held at Hong Kong border town over protests, As Beijing sends new envoy

Massive Hong Kong pro-democracy rally ends in police clashes

EARLY EARTH
Bolsonaro pardons Brazil security forces convicted of unintentional crimes

Four sailors kidnapped by suspected pirates off Togo: navy

EARLY EARTH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.