Medical and Hospital News  
ROBO SPACE
Light processing improves robotic sensing, study finds
by Staff Writers
Aberdeen Providing Ground MD (SPX) Sep 15, 2020

Examples of high dynamic range luminance in views of a cave opening, where combinations of indoor and outdoor luminance can exceed a 10,000-to-1 maximum-to-minimum luminance ratio. The scene at the right is a blended image across multiple exposures, illustrating the human ability to see multiple targets (three uniforms and one car) across vast luminance differences in the same view.

A team of Army researchers uncovered how the human brain processes bright and contrasting light, which they say is a key to improving robotic sensing and enabling autonomous agents to team with humans.

To enable developments in autonomy, a top Army priority, machine sensing must be resilient across changing environments, researchers said.

"When we develop machine vision algorithms, real-world images are usually compressed to a narrower range, as a cellphone camera does, in a process called tone mapping," said Andre Harrison, a researcher at the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "This can contribute to the brittleness of machine vision algorithms because they are based on artificial images that don't quite match the patterns we see in the real world."

By developing a new system with 100,000-to-1 display capability, the team discovered the brain's computations, under more real-world conditions, so they could build biological resilience into sensors, Harrison said.

Current vision algorithms are based on human and animal studies with computer monitors, which have a limited range in luminance of about 100-to-1, the ratio between the brightest and darkest pixels. In the real world, that variation could be a ratio of 100,000-to-1, a condition called high dynamic range, or HDR.

"Changes and significant variations in light can challenge Army systems - drones flying under a forest canopy could be confused by reflectance changes when wind blows through the leaves, or autonomous vehicles driving on rough terrain might not recognize potholes or other obstacles because the lighting conditions are slightly different from those on which their vision algorithms were trained," said Army researcher Dr. Chou Po Hung.

The research team sought to understand how the brain automatically takes the 100,000-to-1 input from the real world and compresses it to a narrower range, which enables humans to interpret shape. The team studied early visual processing under HDR, examining how simple features like HDR luminance and edges interact, as a way to uncover the underlying brain mechanisms.

"The brain has more than 30 visual areas, and we still have only a rudimentary understanding of how these areas process the eye's image into an understanding of 3D shape," Hung said.

"Our results with HDR luminance studies, based on human behavior and scalp recordings, show just how little we truly know about how to bridge the gap from laboratory to real-world environments. But, these findings break us out of that box, showing that our previous assumptions from standard computer monitors have limited ability to generalize to the real world, and they reveal principles that can guide our modeling toward the correct mechanisms."

The Journal of Vision published the team's research findings, Abrupt darkening under high dynamic range (HDR) luminance invokes facilitation for high contrast targets and grouping by luminance similarity.

Researchers said the discovery of how light and contrast edges interact in the brain's visual representation will help improve the effectiveness of algorithms for reconstructing the true 3D world under real-world luminance, by correcting for ambiguities that are unavoidable when estimating 3D shape from 2D information.

"Through millions of years of evolution, our brains have evolved effective shortcuts for reconstructing 3D from 2D information," Hung said. "It's a decades-old problem that continues to challenge machine vision scientists, even with the recent advances in AI."

In addition to vision for autonomy, this discovery will also be helpful to develop other AI-enabled devices such as radar and remote speech understanding that depend on sensing across wide dynamic ranges.

With their results, the researchers are working with partners in academia to develop computational models, specifically with spiking neurons that may have advantages for both HDR computation and for more power-efficient vision processing - both important considerations for low-powered drones.

"The issue of dynamic range is not just a sensing problem," Hung said.

"It may also be a more general problem in brain computation because individual neurons have tens of thousands of inputs. How do you build algorithms and architectures that can listen to the right inputs across different contexts? We hope that, by working on this problem at a sensory level, we can confirm that we are on the right track, so that we can have the right tools when we build more complex AIs."

Research paper


Related Links
US Army Research Laboratory
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Educated yet amoral: AI capable of writing books sparks awe
Paris (AFP) Sept 2, 2020
An artificial intelligence (AI) technology made by a firm co-founded by billionaire Elon Musk has won praise for its ability to generate coherent stories, novels and even computer code but it remains blind to racism or sexism. GPT-3, as Californian company OpenAI's latest AI language model is known, is capable of completing a dialogue between two people, continuing a series of questions and answers or finishing a Shakespeare-style poem. Start a sentence or text and it completes it for you, basin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Plants might be able to help forensic scientists find dead bodies

Race to find ship survivors as Typhoon Haishen nears Japan

Desperate search for crew of ship sunk in typhoon off Japan

Cargo ship with 43 crew and 6,000 cows sank off Japan in typhoon: survivor

ROBO SPACE
Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

ROBO SPACE
The oldest Neanderthal DNA of Central-Eastern Europe

Unfair playing fields, pay gaps drag down everyone's motivation

Being a jerk won't get you a promotion, study says

Each human gut hosts a unique community of viruses

ROBO SPACE
Pakistan's only Asian elephant prepared for new home

Older bulls hold important leadership roles in elephant societies

Long gone, ibex gains foothold in French Pyrenees

Common, rare species equally vulnerable to climate change

ROBO SPACE
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Brazil could launch Chinese Covid-19 vaccine this year: governor

ROBO SPACE
Families fear for Hong Kong 'speedboat fugitives' in China custody

Australia rejects Chinese claim reporters evaded the law

Australian spy agency targeted Chinese journalists: Beijing

China says Australian TV anchor detained on 'national security' grounds

ROBO SPACE
USS Detroit deployed for counternarcotics operations

Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

'Virtual kidnappings' warning for Chinese students in Australia

Mexico navy implicated in disappearance of 27 people

ROBO SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.