. Medical and Hospital News .




.
TIME AND SPACE
Light squeezed on a quantum scale
by Staff Writers
Brisbane, Australia (SPX) Sep 24, 2012

illustration only

An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese research collaboration made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced optical phase tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for Quantum Dynamics, said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the phase of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of light waves with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement making it less precise than if we had used light with no squeezing."

Participating research organisations: The University of Tokyo, Griffith University, Centre for Quantum Computation and Communication Technology (Australian Research Council), University of New South Wales (Canberra), Kyoto University, University of Waterloo (Ontario), Macquarie University, University of Queensland.

Related Links
Griffith University
Understanding Time and Space




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Experiment in University of Florida laboratory corrects prediction in quantum theory
Gainesville, FL (SPX) Sep 21, 2012
An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe. Much of what we know about quantum mechanics is theoretical and tested via computer modeling because quantum systems, like electrons whizzing around the nucleus of an atom, are difficult to pin down for observation. ... read more


TIME AND SPACE
EU offers Italy 670 mn euros in quake aid

Norway supplies $168M for famine relief

Haunting 'Land of Hope' part shot on location in Fukushima

Japan slams brakes on $63 billion in spending

TIME AND SPACE
Improved positioning indoors

ITT Exelis announces new capability in GPS interference, detection and geolocation

Countdown: a month to go to Galileo's next launch

Monitech Announces Zero-Installation Tracking System for Automotive Industry

TIME AND SPACE
Genetic mutation may have allowed early humans to migrate throughout Africa

Ancient tooth may provide evidence of early human dentistry

People change moral position without even realizing it

Seeing fewer older people in the street may lead low-income adults to fast-track their lives

TIME AND SPACE
Major changes needed to protect species and ecosystems

Rapid urban expansion threatens biodiversity

Study of giant viruses shakes up tree of life

Britain grants first licence for badger cull

TIME AND SPACE
Swine flu vaccine linked to child narcolepsy: EU watchdog

Cambodians fight malaria with the push of a button

Elton John cites US discrimination of HIV inmates

Yosemite extends hantavirus alert to 230,000

TIME AND SPACE
Chinese man wrongly sent to labour camp: panel

H.K. students protest over 'brainwashing' classes

China villager bombs local government office

China's Wen says property controls still needed: Xinhua

TIME AND SPACE
Suspect in murder of Chinese sailors admits guilt

Philippine forces rescue Chinese hostage, kill kidnappers

Obama denies gun-running probe a 'whitewash'

US authorities botched Mexico gun-running probe

TIME AND SPACE
Walker's World: Super-Mario's new dawn

High-frequency stock trade risky, unfair: experts

China's stance could weaken its economy: Japan PM

Spain bailout fears rattle eurozone again


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement