Medical and Hospital News  
TECH SPACE
Light used to measure the 'big stretch' in spider silk proteins
by Staff Writers
Baltimore MD (SPX) Feb 17, 2016


Without the protein myosin to pull on it, vinculin can been seen to relax in this human cell (lower right) as the colors shift from blue to red as FRET increases. Image courtesy Taekjip Ha. Watch a video on the research here.

While working to improve a tool that measures the pushes and pulls sensed by proteins in living cells, biophysicists at Johns Hopkins say they've discovered one reason spiders' silk is so elastic: Pieces of the silk's protein threads act like supersprings, stretching to five times their initial length. The investigators say the tool will shed light on many biological events, including the shifting forces between cells during cancer metastasis.

"All other known springs, biological and nonbiological, lengthen in a way that is directly proportional to the force applied to them only until they have been stretched to about 20 percent of their original length," notes Taekjip Ha, Ph.D., the study's lead researcher.

"At that point, you have to apply more and more force to stretch them the same distance as before. But the piece of the spider silk protein we focused on continues to stretch in direct proportion to the force applied until it reaches its maximal stretch of 500 percent." Details of the research were published online in the journal Nano Letters.

Ha, a Bloomberg Distinguished Professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine, says the new discovery came during follow-up to research he and his team, then at the University of Illinois at Urbana-Champaign, described in the journal Nature in 2010, work done in collaboration with cell biologists led by Martin Schwartz, then at the University of Virginia.

The Virginia team set up those experiments by inserting a repeating amino acid sequence - taken from the spider silk protein known as flagelliform - into a human protein called vinculin. Vinculin is responsible for internalizing forces outside a cell by bridging the cellular membrane and the actin network within the cell, making it an important mechanical communicator within the cell.

The scientists also flanked the flagelliform insert in vinculin with two fluorescent proteins to light up and "report" what was going on through fluorescence resonance energy transfer, or FRET. FRET occurs when one fluorescent molecule is close enough to another that it activates the second.

So, when vinculin was relaxed within a cell, it "glowed" yellow, the color of the second fluorescent protein being activated by the first. As vinculin stretched, it began to glow blue - the color of the first fluorescent protein - because the lengthening distance between the two made FRET activation of the yellow protein impossible.

Using regular fluorescence microscopy, the scientists were able to watch the forces acting on vinculin in live cells in real time. But an issue remained: how to translate the changing colors into measurements of force "sensed" by vinculin.

That's where his team came in, says Ha. The researchers attached one end of modified vinculin to a glass plate and the other to a tether made of DNA with a small plastic bead at the end. They then pulled on the bead with what Ha describes as "chopsticks made of light," focusing a beam of light on a tiny spot nearby and generating an attractive force that pulled the bead toward the light source. That way, Ha says, his investigators could link the amount of FRET with the amount of force on vinculin, allowing them to measure the dynamic forces acting on proteins in live cells just by imaging them.

In that earlier study, the team inserted 40 flagelliform amino acids into vinculin, composed of eight repeats of the amino acid sequence GPGGA. In this new study, the scientists wanted to learn more about the flagelliform tool by varying its length, so they created inserts of five and 10 repeats to test alongside the original insert of eight. What they found is that the shortest insert was the most responsive to the widest range of forces, responding with linear increases in length to forces from 1 to 10 piconewtons. (Ha says that 1 piconewton is approximately the weight of a bacterium.)

The team wasn't expecting the spider silk inserts to show such linear behavior because, according to Ha, they don't form well-defined, three-dimensional structures. "Usually, unstructured proteins show disorderly, nonlinear behavior when we pull on them," says Ha. "The fact that these don't act that way means that they will be really useful tools for studying protein mechanics because their behavior is easy to understand and predict."

Already, Ha says, the flagelliform insert of eight repeats from the previous research has been used to study many biological phenomena, including the shifting forces between cells during cancer metastasis and the pushing and pulling of cells during the development of simple, multicelled organisms, like worms.

"Tension is important for many activities inside cells," says Ha. "Cells sense mechanical forces in their environments and change their behaviors and functions in response. Now we have a way to watch and understand these forces and how they are transmitted at a molecular level in living cells."

Other authors of the report include Michael Brenner and Ruobo Zhou of the University of Illinois at Urbana-Champaign; Daniel Conway of the University of Virginia; and Luca Lanzano and Enrico Gratton of the University of California, Irvine.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Johns Hopkins Medicine
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
UBC researchers discover new glass technology
Vancouver, Canada (SPX) Feb 12, 2016
Imagine if the picture window in your living room could double as a giant thermostat or big screen TV. A discovery by researchers at the University of British Columbia has brought us one step closer to this becoming a reality. Researchers at UBC's Okanagan campus in Kelowna found that coating small pieces of glass with extremely thin layers of metal like silver makes it possible to enhance ... read more


TECH SPACE
Erdogan threatens to send refugees to EU as NATO steps in

Taiwan to seize assets of collapsed building developer

Refugee crisis 'a near existential' threat to Europe: Kerry

NATO sends warships on Aegean migrant mission

TECH SPACE
Russia Developing Glonass Satellite And Latest Bird Launched

China to launch nearly 40 Beidou navigation satellites in five years

45th SW supports Air Force GPS IIF-12 launch aboard an Atlas V

United Launch Alliance launches GPS IIF-12 satellite for U.S. Air Force

TECH SPACE
Early human ancestor did not have the jaws of a nutcracker

Wirelessly supplying power to brain

Humans evolved by sharing technology and culture

DNA evidence uncovers major upheaval in Europe near end of last Ice Age

TECH SPACE
You scratch my back and I might scratch yours: the grooming habits of wild chimpanzees

Cryonics breakthrough: Frozen rabbit brain successfully returned

65-year-old Laysan albatross hatches 40th chick

Wild elephant goes on rampage in Indian town

TECH SPACE
Many white-tailed deer have malaria

Fish, other mosquitoes now warriors in Zika battle

Four swine flu deaths in Lebanon this winter: health ministry

China confirms first imported Zika case: report

TECH SPACE
Over 30 Hong Kong protesters in court over riot

'Dead' Chinese baby awakes just before cremation

Dozens hurt as riot erupts in Hong Kong

Hong Kong kicks off Year of Monkey, but primate relations sour

TECH SPACE
Two Mexican marines, suspect killed in shootout

U.S., U.K. help build West African partners' anti-piracy capabilities

TECH SPACE
'Coworking' grows amid search for new office lifestyle

HSBC bank stays in London, snubbing Hong Kong

Carbon reductions won't hinder Chinese growth

Norway's massive wealth fund pulls out of 73 companies









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.