Medical and Hospital News  
CHIP TECH
Liquid metals come to the rescue of semiconductors
by Staff Writers
Melbourne, Australia (SPX) Oct 13, 2020

New deposition approach: synthesising and exfoliating (transferring onto a silicon substrate for example) 2D semiconducting MoS2.

Moore's law is an empirical suggestion describing that the number of transistors doubles every few years in integrated circuits (ICs). However, Moore's law has started to fail as transistors are now so small that the current silicon-based technologies are unable to offer further opportunities for shrinking.

One possibility of overcoming Moore's law is to resort to two-dimensional semiconductors. These two-dimensional materials are so thin that they can allow the propagation of free charge carriers, namely electrons and holes in transistors that carry the information, along an ultra-thin plane.

This confinement of charge carriers can potentially allow the switching of the semiconductor very easily. It also allows directional pathways for the charge carriers to move without scattering and therefore leading to infinitely small resistance for the transistors.

This means in theory the two-dimensional materials can result in transistors that do not waste energy during their on/off switching. Theoretically, they can switch very fast and also switch off to absolute zero resistance values during their non-operational states. Sounds ideal, but life is not ideal!

In reality, there are still many technological barriers that should be surpassed for creating such perfect ultra-thin semiconductors. One of the barriers with the current technologies is that the deposited ultra-thin films are full of grain boundaries so that the charge carriers are bounced back from them and hence the resistive loss increases.

One of the most exciting ultra-thin semiconductors is molybdenum disulphide (MoS2) which has been the subject of investigation for the past two decades for its electronic properties. However, obtaining very large-scale two-dimensional MoS2 without any grain boundaries has been proven to be a real challenge.

Using any current large-scale deposition technologies, grain-boundary-free MoS2 which is essential for making ICs has yet been reached with acceptable maturity. However, now researchers at the School of Chemical Engineering, University of New South Wales (UNSW) have developed a method to eliminate such grain boundaries based on a new deposition approach.

"This unique capability was achieved with the help of gallium metal in its liquid state. Gallium is an amazing metal with a low melting point of only 29.8C. It means that at a normal office temperature it is solid, while it turns into a liquid when placed at the palm of someone's hand. It is a melted metal, so its surface is atomically smooth.

It is also a conventional metal which means that its surface provides a large number of free electrons for facilitating chemical reactions." Ms Yifang Wang, the first author of the paper said.

"By bringing the sources of molybdenum and sulphur near the surface of gallium liquid metal, we were able to realize chemical reactions that form the molybdenum sulphur bonds to establish the desired MoS2. The formed two-dimensional material is templated onto an atomically smooth surface of gallium, so it is naturally nucleated and grain boundary free.

"This means that by a second step annealing, we were able to obtain very large area MoS2 with no grain boundary. This is a very important step for scaling up this fascinating ultra-smooth semiconductor." Prof Kourosh Kalantar-Zadeh, the leading author of the work said.

The researchers at UNSW are now planning to expand their methods to creating other two-dimensional semiconductors and dielectric materials in order to create a number of materials that can be used as different parts of transistors.

Research Report: "Self-Deposition of 2D Molybdenum Sulfides on Liquid Metals"


Related Links
ARC Centre Of Excellence In Future Low-Energy Electronics Technologies
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
New algorithm could unleash the power of quantum computers
Los Alamos NM (SPX) Oct 07, 2020
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations. "Quantum computers have a limited time to perform calculations before their useful quantum nature, which we call coherence, breaks down," said Andrew Sornborger of the Computer, Computational, and Statistical Sciences division at Los Alamos National Laboratory, and senior aut ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Giant rice crane urges South Koreans to 'Cheer Up!'

How Aerospace Corp supports the satellites helping wildfire responders save lives

Woes of Beirut rescuers 'microcosm' of troubled Lebanon

'Make it safer': calls grow to reform Myanmar's deadly jade trade

CHIP TECH
GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

Tech combo is a real game-changer for farming

CHIP TECH
Study finds preserved brain material in Vesuvius victim

Neuroscientists discover a molecular mechanism that allows memories to form

Modern humans arrived in Western Europe 5,000 years earlier than thought

Unveiling: Malaysian activist fights for hijab freedom

CHIP TECH
Animal rivalries could inspire 'Napoleonic' intelligence

Megalodon was exceptionally large compared with other sharks

Alien species to increase by 36 percent globally by 2050

Europe's captive tiger trade 'risks spurring illegal demand'

CHIP TECH
After White House, Covid-19 breaches Pentagon

After White House, Covid-19 breaches Pentagon

Face masks unlikely to over-expose wearers to CO2, even those with COPD

'Hi, this is the army': In Spain, troops tackle track-and-trace

CHIP TECH
Millions on the move as China eyes holiday bounce

China anniversary arrests as Hong Kong leader hails 'return to peace'

Families fear for Hong Kong fugitives in China custody

Families fear for Hong Kong fugitives in China custody

CHIP TECH
Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

'Virtual kidnappings' warning for Chinese students in Australia

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.