Medical and Hospital News  
NANO TECH
Major Advance In Understanding How Nanowires Form

File image.
by Staff Writers
Copenhagen, Denmark (SPX) Apr 04, 2011
insights into why and how nanowires take the form they do will have profound implications for the development of future electronic components. PhD student Peter Krogstrup from the Nano-Science Center at the University of Copenhagen is behind the sensational new theoretical model, which is developed in collaboration with researchers from CINAM-CNRS in Marseille.

One of the most important components in future electronic devices will likely be based on nanocrystals, which are smaller than the wavelength of the light our eyes can detect.

Nanowires, which are extremely thin nanocrystal wires, are predicted to have a predominant role in these technologies because of their unique electrical and optical properties. Researchers around the world have been working for years to improve the properties of these nanowires.

With his research, PhD student Peter Krogstrup at the Niels Bohr Institute, University of Copenhagen has laid the foundations for a greater understanding of nanowires.

With that comes the potential for improving their performance, which will bring the research closer to being applied in the development of solar cells and computers. In the latest edition of Physical Review Letters he describes how, under certain conditions, nanowires form a crystal structure that really should not be possible, seen from an energy perspective.

"Crystals will always try to take the form in which their internal energy is as little as possible. It is a basic law of physics and according to it these nanowires should have a cubic crystal structure, but we almost always see that a large part of the structure is hexagonal," explains Peter Krogstrup, who has been working with the theory in recent years.

Catalyst particle shape is the key
In order to explain why and when these crystals become hexagonal, Peter Krogstrup has, as part of his doctoral dissertation, examined the shape of the catalyst particle (a little nano-droplet), which controls the growth of the nanowires. It appears that the shape of the droplet depends on the amount of atoms from group 3 in the periodic system, which make up half of the atoms in the nanowire crystal.

The other half, atoms from group 5 in the periodic system, are absorbed by the drop and hence the atoms organize themselves into a lattice, and the nanowire crystal will grow.

"We have shown that it is the shape of the droplet, which determines what kind of crystal structure the nanowires obtain and with this knowledge it will be easier to improve the properties of the nanowires," explains Peter Krogstrup and continues: "The crystal structure has an enormous influence on the electrical and optical properties of the nanowires and you would typically want them to have a certain structure, either cubic or hexagonal.

The better nanowires we can make the better electronic components we can make to the benefit of us all," says Peter Krogstrup, whose research is conducted in collaboration with the firm SunFlake A/S, which is located at the Nano-Science Center at the University of Copenhagen. The company is working to develop solar cells of the future based on nanowires.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Copenhagen
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Heavy Metals Open Path To High Temperature Nanomagnets
Copenhagen, Denmark (SPX) Apr 04, 2011
How would you like to store all the films ever made on a device the size of an I-phone? Magnets made of just a few metallic atoms could make it possible to build radically smaller storage devices and have also recently been proposed as components for spintronics devices. There's just one obstacle on the way. Nano-sized magnets have only been seen to work at temperatures a few hairs above a ... read more







NANO TECH
Japan uses colour dye to trace nuclear leak

US studies Fukushima disaster for safety lessons

Japan PM tells nuclear workers 'you can't lose this battle'

Japan PM vows help in first tour of tsunami zone

NANO TECH
GPS Study Shows Wolves More Reliant On A Cattle Diet

Galileo Labs: Better Positioning With Concept

Compact-Sized GLONASS/GPS Receiver

GPS Mundi Releases Points Of Interest Files For Ten More Major Cities

NANO TECH
Parody blooms on Twitter

Chatting babies video a YouTube sensation

Research Proves No 2 Of Us Are Alike, Even Identical Twins

Researchers Detail How Neurons Decide How To Transmit Information

NANO TECH
New dino in same league as T. rex

Web hosting titan under fire for killing elephant

Rare sea lion spotted in California

India's tiger population on the rise: report

NANO TECH
After 30 years, war on AIDS at 'moment of truth'

To Meet, Greet Or Retreat During Influenza Outbreaks

Virus in Chinese ducks could infect humans

Mexican governor says new H1N1 outbreak came from US

NANO TECH
Government critics pressured in China crackdown

Despair as China executes three Filipinos

Aussie blogger missing in China contacts family: AAP

Global rock stars knockin' on China's door again

NANO TECH
Spanish navy delivers suspected pirates to Seychelles

Spanish navy arrests 11 suspected Somali pirates

Indian navy captures pirates, rescues crew

Piracy: Calls for tougher action intensify

NANO TECH
Walker's World: Forget PIGS; hello FIBS

China's central bank hikes interest rates

Obama, Republicans seek spending cut endgame

GOP budget demands others' 'best ideas'


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement