Medical and Hospital News  
NANO TECH
Making 3D nanosuperconductors with DNA
by Staff Writers
Upton NY (SPX) Nov 11, 2020

An illustration showing how highly nanostructured 3-D superconducting materials can be created based on DNA self-assembly.

Three-dimensional (3-D) nanostructured materials - those with complex shapes at a size scale of billionths of a meter - that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3-D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3-D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3-D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary "staple" strands at specific locations - similar to origami, the Japanese art of paper folding.

"Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures," said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab's Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and materials science at Columbia Engineering.

"However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3-D nanoscale architectures that can be fully "converted" into inorganic materials like superconductors."

To make the scaffold, the Brookhaven and Columbia Engineering scientists first designed octahedral-shaped DNA origami "frames."

Aaron Michelson, Gang's graduate student, applied a DNA-programmable strategy so that these frames would assemble into desired lattices. Then, he used a chemistry technique to coat the DNA lattices with silicon dioxide (silica), solidifying the originally soft constructions, which required a liquid environment to preserve their structure.

The team tailored the fabrication process so the structures were true to their design, as confirmed by imaging at the CFN Electron Microscopy Facility and small-angle x-ray scattering at the Complex Materials Scattering beamline of Brookhaven's National Synchrotron Light Source II (NSLS-II). These experiments demonstrated that the structural integrity was preserved after they coated the DNA lattices.

"In its original form, DNA is completely unusable for processing with conventional nanotechnology methods," said Gang. "But once we coat the DNA with silica, we have a mechanically robust 3-D architecture that we can deposit inorganic materials on using these methods. This is analogous to traditional nanomanufacturing, in which valuable materials are deposited onto flat substrates, typically silicon, to add functionality."

The team shipped the silica-coated DNA lattices from the CFN to Bar-Ilan's Institute of Superconductivity, which is headed by Yosi Yeshurun. Gang and Yeshurun became acquainted a couple years ago, when Gang delivered a seminar on his DNA assembly research.

Yeshurun - who over the past decade has been studying the properties of superconductivity at the nanoscale - thought that Gang's DNA-based approach could provide a solution to a problem he was trying to solve: How can we fabricate superconducting nanoscale structures in three dimensions?

"Previously, making 3-D nanosuperconductors involved a very elaborate and difficult process using conventional fabrication techniques," said Yeshurun, co-corresponding author. "Here, we found a relatively simple way using Oleg's DNA structures."

At the Institute of Superconductivity, Yeshurun's graduate student Lior Shani evaporated a low-temperature superconductor (niobium) onto a silicon chip containing a small sample of the lattices. The evaporation rate and silicon substrate temperature had to be carefully controlled so that niobium coated the sample but did not penetrate all the way through. If that happened, a short could occur between the electrodes used for the electronic transport measurements.

"We cut a special channel in the substrate to ensure that the current would only go through the sample itself," explained Yeshurun.

The measurements revealed a 3-D array of Josephson junctions, or thin nonsuperconducting barriers through which superconducting current tunnels. Arrays of Josephson junctions are key to leveraging quantum phenomena in practical technologies, such as superconducting quantum interference devices for magnetic field sensing. In 3-D, more junctions can be packed into a small volume, increasing device power.

"DNA origami has been producing beautiful and ornate 3-D nanoscale structures for almost 15 years, but DNA itself is not necessarily a useful functional material," said Evan Runnerstrom, program manager for materials design at the U.S. Army Combat Capabilities Development Command Army Research Laboratory of the U.S. Army Research Office, which funded the work in part.

"What Prof. Gang has shown here is that you can leverage DNA origami as a template to create useful 3-D nanostructures of functional materials, like superconducting niobium. This ability to arbitrarily design and fabricate complex 3-D-structured functional materials from the bottom-up will accelerate the Army's modernization efforts in areas like sensing, optics, and quantum computing."

"We demonstrated a pathway for how complex DNA organizations can be used to create highly nanostructured 3-D superconducting materials," said Gang.

"This material conversion pathway gives us an ability to make a variety of systems with interesting properties - not only superconductivity but also other electronic, mechanical, optical, and catalytic properties. We can envision it as a "molecular lithography," where the power of DNA programmability is transferred to 3-D inorganic nanofabrication."

Research paper


Related Links
Brookhaven National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Researchers share design for affordable single-molecule microscope
Washington DC (UPI) Nov 06, 2020
With education budgets shrinking at universities in many parts of the world, every expense matters. Thanks to a team of scientists and students from the University of Sheffield, stocking the chem lab just got a little less expensive. In a new paper, published Friday in the journal Nature Communications, researchers shared plans for the construction of a more affordable single-molecule microscope. The so-called smfBox isn't just any microscope; it's a specialist microscope capable of perf ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Turkey ends quake rescue mission

'Miracle' girl rescued 91 hours after Turkey quake

Young girl rescued 91 hours after Turkey quake

UN chief deplores persistent lack of women in peace efforts

NANO TECH
DNA-based molecular tagging system could replace printed barcodes

China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

NANO TECH
Neanderthal children grew, weaned similarly to Homo sapien children

Mountain gorillas friendly with neighbors outside of core home ranges

How'd we get so picky about friendship late in life? Ask the chimps

Cognitive elements of language have existed for 40 million years

NANO TECH
Mothers, daughters in ambrosia beetle colonies share reproduction work

Ants are skilled farmers: They have solved a problem that we humans have yet to

Honey badger-like animal prowled South Africa 5 million years ago

Chinook salmon that migrate in spring, fall more alike than thought

NANO TECH
China bars arrivals from France over virus fears

U.S. Forces Korea reports 10 new COVID-19 cases

Beijing bars arrivals from UK, Belgium due to second Covid-19 waves

Canada reports rare strain of swine flu found in a human

NANO TECH
China starts once-a-decade census of world's largest population

Hong Kong teen activist Tony Chung charged with secession

Hong Kong teen activist arrested near US consulate

Bad faith: China's 'underground' Catholics wary of Vatican deal

NANO TECH
UK police given more time to hold tanker 'hijack' seven

Seven held for attempted hijacking off UK coast

Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

NANO TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.