Medical and Hospital News  
NANO TECH
Making massive leaps in electronics at nano-scale
by Staff Writers
Johannesburg, South Africa (SPX) May 31, 2018

Siphephile Ncube.

Researchers at the University of the Witwatersrand have found ways to control the spin transport in networks of the smallest electrical conductor known to man.

By chemically attaching nano-particles of the rare earth element, gadolinium, to carbon nanotubes, the researchers have found that the electrical conductivity in the nanotubes can be increased by incorporating the spin properties of the gadolinium which arises from its magnetic nature. To put it plainly the presence of a magnet in an electron transfer media introduces another degree of freedom that enhances the electron transfer but only if tailored precisely.

Discovered in Japan in 1993, carbon nanotubes are the thinnest tubes in the universe, consisting of a cylinder of single carbon atoms. At the time of its discovery it was revolutionary, and it was expected that it could replace silicon in electronic circuits, such as microchips and computer hard drives.

"Carbon nanotubes are known for their ability to carry a high amount of electrical current and they are very strong. They are very thin but electrons can move very fast in them, with speeds of up to Gigahertz or Terahertz, and when coupled to nanomagnets they greatly extend the functionality of the carbon nanotubes, which is required to advance modern technology through the development of high speed spintronic devices," says Siphephile Ncube, a PhD student at the Wits School of Physics and the lead author of the study. Her research was published in Scientific Reports on Wednesday (23 May 2018).

During her PhD, Ncube collaborated with a team of researchers from the University of the Witwatersrand, University of Johannesburg and the Paul Sabatier University in France. The researchers chemically attached gadolinium nanoparticles on the surface of the carbon nanotubes to test whether the magnetism increases or inhibits the transfer of electrons through the system.

The measurements to interrogate the effect of magnetic nanoparticles on a network of multi-walled carbon nanotubes were carried out at the Nanoscale Transport Physics Laboratory (NSTPL) at Wits. This facility is dedicated to novel nano-electronics and it was initiated by the NRF Nanotechnology flagship programme.

"We found that the effect of the magnetic nano-particles is read off in the electronic transport of the nanotubes. Due to the presence of the magnet the electrons become spin polarised and the charge transfer is dependent on the magnetic state of the gadolinium.

"When the overall magnetic poles of the gadolinium are oppositely aligned, it causes higher resistance in the nanotubes and slows down the flows of electrons. When the magnetic poles are misaligned, it has a low resistance, and assists the electron transport," says Ncube. This phenomenon is known as the Spin Valve Effect, which finds wide application in the development of hard disk drives used for data storage.

Ncube started her research on carbon nanotubes as a Master's student at the Wits School of Physics in 2011, where she made single walled carbon nanotubes, by establishing a laser synthesis technique. Her work, which led to the publishing of various research articles in the field, was performed on instruments from the CSIR National Laser Centre Rental Pool Programme.

She is also the first researcher in Africa to build an electronic device that can measure the electron transfer properties of the carbon nanotubes coupled to magnetic nanoparticles. She was funded by the DST-NRF Centre of Excellence in Strong Materials.

"Ncube's research established the great potential of carbon nanotubes for ultra-fast switching device and magnetic memory applications, a realisation we have been working towards since the establishment of the NSTPL facility in 2009," says Ncube's PhD supervisor, Professor Somnath Bhattacharyya.

"To date, modified nanotubes have demonstrated good spin transport for devices made from individual nanotubes. For the first time we have demonstrated spin mediated electron transport in a network of nanotubes without incorporation of magnetic leads." The project is part of the objectives outlined in the NRF Nanotechnology flagship program.


Related Links
University of the Witwatersrand
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Change the face of nanoparticles and you'll rule chemistry
Warsaw, Poland (SPX) May 29, 2018
Change the face of nanoparticles and you'll rule chemistry! Depending on the lighting, the surface of appropriately crafted nanoparticles can change its topography. Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences have shown that the molecular mechanism they have designed makes it possible, by the use of light, to effectively uncover or hide catalyst molecules. The technique they present leads to qualitatively new possibilities to control the course of chemical reac ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Sentinel-1 warns of refugee island flood risk

Seismometer readings could offer debris flow early warning

Peace needs at least 15 years: Colombian president

China floods to hit US economy: Climate effects through trade chains

NANO TECH
Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

China to launch two BeiDou-2 backup satellites

China to launch another 11 BeiDou-3 satellites in 2018

NANO TECH
How did human brains get so large?

How to build a brain: discovery answers evolutionary mystery

Geologic evidence in ancient boulders supports a coastal theory of early settlement in Americas

Wars and clan structure may explain a strange biological event 7,000 years ago

NANO TECH
Massive beach clean-up for Hong Kong sea turtles

New technique shows what microbes eat

Galapagos iguanas transferred due to overpopulation

France destroys over 500 kilos of ivory stocks

NANO TECH
Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

Could we predict the next Ebola outbreak by tracking the migratory patterns of bats?

Deadly malaria's evolution revealed

NANO TECH
Nine jailed in Hong Kong for 'Fishball Revolution' riots

With Cambodia's free press under fire, 'China model' makes inroads

China top court overturns tycoon's conviction in rare reversal

Families of Tiananmen victims urge China's Xi to 're-evaluate' crackdown

NANO TECH
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

NANO TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.