Medical and Hospital News  
MARSDAILY
Martian moon orbit hints at ancient ring
by Staff Writers
Mountain View CA (SPX) Jun 03, 2020

Illustration of the giant impact that is thought to have led to the creation of Martain moons Phobos and Deimos.

Scientists from the SETI Institute and Purdue University have found that the only way to produce Deimos's unusually tilted orbit is for Mars to have had a ring billions of years ago. While some of the more massive planets in our solar system have giant rings and numerous big moons, Mars only has two small, misshapen moons, Phobos and Deimos. Although these moons are small, their peculiar orbits hide important secrets about their past.

For a long time, scientists believed that Mars's two moons, discovered in 1877, were captured asteroids. However, since their orbits are almost in the same plane as Mars's equator, the moons must have formed at the same time as Mars. But the orbit of the smaller, more distant moon Deimos is tilted by two degrees.

"The fact that Deimos's orbit is not exactly in plane with Mars's equator was considered unimportant, and nobody cared to try to explain it," says lead author Matija Cuk, a research scientist at the SETI Institute. "But once we had a big new idea and we looked at it with new eyes, Deimos's orbital tilt revealed its big secret."

This significant new idea was put forward in 2017 by Cuk's co-author David Minton, professor at Purdue University and his then-graduate student Andrew Hesselbrock.

Hesselbrock and Minton noted that Mars's inner moon, Phobos, is losing height as its tiny gravity is interacting with the looming Martian globe. Soon, in astronomical terms, Phobos's orbit will drop too low, and Mars's gravity will pull it apart to make a ring around the planet.

Hesselbrock and Minton proposed that over billions of years, generations of Martian moons were destroyed into rings. Each time, the ring would then give rise to a new, smaller moon to repeat the cycle over again.

This cyclic Martian moon theory has one crucial element that makes Deimos's tilt possible: a newborn moon would move away from the ring and Mars, which is in the opposite direction from the inward spiral Phobos is experiencing due to gravitational interactions with Mars. An outward-migrating moon just outside the rings can encounter a so-called orbital resonance, in which Deimos's orbital period is three times that of the other moon.

These orbital resonances are picky but predictable about the direction in which they are crossed. We can tell that only an outward-moving moon could have strongly affected Deimos, which means that Mars must have had a ring pushing the inner moon outward.

Cuk and collaborators deduce that this moon may have been 20 times as massive as Phobos, and may have been its "grandparent" existing just over 3 billion years ago, which was followed by two more ring-moon cycles, with the latest moon being Phobos.

This insight from a modest tilt of a humble moon's orbit has some significant consequences for our understanding of Mars and its moons. The discovery of the past orbital resonance all but clinches the cyclic ring-moon theory for Mars.

It implies that for much of its history, Mars possessed a prominent ring. While Deimos is billions of years old, Cuk and collaborators believe Phobos is young as astronomical objects go, forming maybe only 200 million years ago, just in time for the dinosaurs.

These theories may be up for some serious testing in a few years, as the Japanese space agency JAXA plans to send a spacecraft to Phobos in 2024, which would collect samples from the moon's surface and bring them back to Earth.

Cuk is hopeful that this will give us firm answers about the murky past of the Martian moons: "I do theoretical calculations for a living, and they are good, but getting them tested against the real world now and then is even better."

Research Report: Evidence for a Past Martian Ring from the Orbital Inclination of Deimos


Related Links
SETI Institute
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Researchers simulate the core of Mars to investigate its composition and origin
Tokyo, Japan (SPX) May 14, 2020
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time. This information will be compared to observations made by Martian space probes in the near future. Whether the results between experiment and observation coincide or not will either confirm existing theories about Mars' composition or call into question the story of its origin. Mars is one of our closest terrestrial neighbors, yet it's still ve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China says US protests show 'chronic disease' of racism

Some 50 world leaders call for post-pandemic cooperation

Virus misinformation fuels panic in Asia

Heat, water woes and coronavirus: India's perfect storm

MARSDAILY
Harnessing space to save lives at sea

Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

MARSDAILY
Information technology played key role in growth of ancient civilizations

Women with Neandertal gene give birth to more children

Similar to humans, chimpanzees develop slowly

Chimpanzees help trace the evolution of human speech back to ancient ancestors

MARSDAILY
Bumblebees nibble the leaves of flowers to trick them into flowering early

New sampling method allows scientists to observe cellular changes over time

Territorial aggression between bird species more common than thought

Botswana probes mysterious death of 12 elephants

MARSDAILY
Poor and black, northeast Brazil faces virus 'hurricane'

Pope prays for Amazonians so 'vulnerable' to the coronavirus

Japan lifts emergency, India domestic flights resume

China virus city in transport shutdown as WHO delays decision

MARSDAILY
UK ex-foreign ministers call for G7 Hong Kong monitor group

Trump strips Hong Kong privileges, curbs students in volley on China

Xinjiang vice chairman faces anti-graft investigation

Hong Kong police ban Tiananmen vigil for first time in 30 years

MARSDAILY
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

MARSDAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.