Medical and Hospital News  
ROBO SPACE
Mathematics of sea slug movement points to future robots
by Staff Writers
Washington DC (SPX) Mar 11, 2019

illustration only

What do pizza slices, sea slugs and one possible design for future soft-bodied robots have in common? They all have frilly surfaces, and new insights about the surprising geometry of frilly surfaces may help a future generation of energy-efficient and extremely flexible soft-body robots move.

The complex folds of a frilly surface like coral reefs or kale leaves is a surface mathematicians refer to as an "inflected nonsmooth surface." It changes the direction in which it bends.

"People have looked at these hyperbolic surfaces for 200 years, but nobody has thought about the role of smoothness in relation to how these things move, their mechanics," said University of Arizona mathematician Shankar Venkataramani. "Nobody saw a relevance to these things until now."

Venkataramani will present his group's research on nonsmooth surfaces, sea slugs and possible robotic applications this week at the 2019 American Physical Society March Meeting in Boston.

Until recently, Venkataramani said, physicists generally assumed that natural frills occur when the balanced forces between simultaneous bending and stretching of a sheet cause the surface to crumple. However, Venkataramani, in recent work with doctoral students John Gemmer and Toby Shearman and Hebrew University physicist Eran Sharon, showed that there can be nonsmooth surfaces that are simultaneously unstretched yet frilly.

"The idea that these frilly surfaces don't have stretching in them, that was completely counterintuitive," he said.

And, he noted, the research showed that changes from one form to another appear to require very little energy. This is key since the ability to change the geometry of surfaces has big implications for their strength and thus ability to act on the surroundings. Pick up a soggy slice of pizza and it creates a mess but "put a little curvature and it becomes stiff and you can eat it," he said.

Having developed the mathematics to describe these surfaces, his group modeled nonsmooth thin films with six up-and-down portions and wondered how they would move.

"We realized that nature already solved the problem millions of years ago. Some sea slugs and marine worms use this geometry to get around," Venkataramani said.

The challenge now, he said, is determining exactly how the distinctive swimming gait of these soft-bodied marine invertebrates, such as the Spanish dancer sea slug, is related to their nonsmooth geometry.

The answer may provide "a potential avenue for building soft robots that are energy-efficient and extremely flexible," Venkataramani said.


Related Links
American Physical Society
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Ultra-low power chips help make small robots more capable
Atlanta GA (SPX) Mar 11, 2019
An ultra-low power hybrid chip inspired by the brain could help give palm-sized robots the ability to collaborate and learn from their experiences. Combined with new generations of low-power motors and sensors, the new application-specific integrated circuit (ASIC) - which operates on milliwatts of power - could help intelligent swarm robots operate for hours instead of minutes. To conserve power, the chips use a hybrid digital-analog time-domain processor in which the pulse-width of signals encod ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Anger, grief sweep Iraq's Mosul as ferry disaster toll hits 100

Italy's Senate blocks Salvini migrant trial

French soldiers on duty for next 'yellow vest' protest

French plan for army backup in 'yellow vest' protests draws fire

ROBO SPACE
Frequency Electronics to qualify atomic clocks for potential use on GPS 3F Satellites

Earliest known Mariner's Astrolabe published in Guinness Book of Records

Earliest known mariner's astrolabe described in new study

One step closer to a clock that could replace GPS and Galileo

ROBO SPACE
From stone chips to microchips: How tiny tools may have made us human

Fossil teeth in Kenya help fill monkey evolution record gap

Chimps' cultural diversity threatened by humans, study says

The mind distracted: technology's battle for our attention

ROBO SPACE
'Insectageddon' is 'alarmist by bad design': Scientists point out the study's major flaws

Research predicts what makes evolution go backwards

At Kenyan orphanage, baby elephants find a new life, and love

Sun bears mimic each other's facial expressions

ROBO SPACE
Zika study may 'supercharge' vaccine research

Facebook launches offensive to combat misinformation on vaccines

After IS, Mosul tackles another terror: super-resistant bacteria

Global maps enabling targeted interventions to reduce burden of mosquito-borne disease

ROBO SPACE
Police detain labour activist in southern China: wife

Hong Kong to build $79 bn artificial island

Chasing celluloid dreams at China's Tinseltown

Chinese metro apologises after goth makeup removal demand

ROBO SPACE
Sudan says Turkish naval ship to boost 'Red Sea security'

ROBO SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.