Medical and Hospital News  
TECH SPACE
Measuring the temperature of two-dimensional materials at the atomic level
by Staff Writers
Chicago IL (SPX) Feb 20, 2018

illustration only

Researchers at the University of Illinois at Chicago describe a new technique for precisely measuring the temperature and behavior of new two-dimensional materials that will allow engineers to design smaller and faster microprocessors. Their findings are reported in the journal Physical Review Letters.

Newly developed two-dimensional materials, such as graphene - which consists of a single layer of carbon atoms - have the potential to replace traditional microprocessing chips based on silicon, which have reached the limit of how small they can get. But engineers have been stymied by the inability to measure how temperature will affect these new materials, collectively known as transition metal dichalcogenides, or TMDs.

Using scanning transmission electron microscopy combined with spectroscopy, researchers at UIC were able to measure the temperature of several two-dimensional materials at the atomic level, paving the way for much smaller and faster microprocessors. They were also able to use their technique to measure how the two-dimensional materials would expand when heated.

"Microprocessing chips in computers and other electronics get very hot, and we need to be able to measure not only how hot they can get, but how much the material will expand when heated," said Robert Klie, professor of physics at UIC and corresponding author of the paper.

"Knowing how a material will expand is important because if a material expands too much, connections with other materials, such as metal wires, can break and the chip is useless."

Traditional ways to measure temperature don't work on tiny flakes of two-dimensional materials that would be used in microprocessors because they are just too small. Optical temperature measurements, which use a reflected laser light to measure temperature, can't be used on TMD chips because they don't have enough surface area to accommodate the laser beam.

"We need to understand how heat builds up and how it is transmitted at the interface between two materials in order to build efficient microprocessors that work," said Klie.

Klie and his colleagues devised a way to take temperature measurements of TMDs at the atomic level using scanning transition electron microscopy, which uses a beam of electrons transmitted through a specimen to form an image.

"Using this technique, we can zero in on and measure the vibration of atoms and electrons, which is essentially the temperature of a single atom in a two-dimensional material," said Klie. Temperature is a measure of the average kinetic energy of the random motions of the particles, or atoms that make up a material. As a material gets hotter, the frequency of the atomic vibration gets higher. At absolute zero, the lowest theoretical temperature, all atomic motion stops.

Klie and his colleagues heated microscopic "flakes" of various TMDs inside the chamber of a scanning transmission electron microscope to different temperatures and then aimed the microscope's electron beam at the material.

Using a technique called electron energy-loss spectroscopy, they were able to measure the scattering of electrons off the two-dimensional materials caused by the electron beam. The scattering patterns were entered into a computer model that translated them into measurements of the vibrations of the atoms in the material - in other words, the temperature of the material at the atomic level.

"With this new technique, we can measure the temperature of a material with a resolution that is nearly 10 times better than conventional methods," said Klie.

"With this new approach, we can design better electronic devices that will be less prone to overheating and consume less power."

The technique can also be used to predict how much materials will expand when heated and contract when cooled, which will help engineers build chips that are less prone to breaking at points where one material touches another, such as when a two-dimensional material chip makes contact with a wire.

"No other method can measure this effect at the spatial resolution we report," said Klie.

"This will allow engineers to design devices that can manage temperature changes between two different materials at the nano-scale level."

Research paper


Related Links
University of Illinois at Chicago
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
UMass Amherst physicists speed up droplet-wrapping process
Amherst MA (SPX) Feb 16, 2018
Experimental physicists at the University of Massachusetts Amherst has reported that they have developed a fast, dynamic new process for wrapping liquid droplets in ultrathin polymer sheets, so what once was a painstaking process taking tens of minutes can now be done in a fraction of a second. Physics professor Narayanan Menon, with current postdoctoral researcher Deepak Kumar, former postdoc Joseph Paulsen and professor of polymer science Thomas Russell, report their findings in the current issu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Hundreds dead in Syria enclave as UN warns situation 'out of control'

Reducing bird-related tragedy through understanding bird behavior

Brazil's Temer announces new security ministry to combat violence

Fukushima operator told to compensate for suicide of 102-year-old

TECH SPACE
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

TECH SPACE
Researchers invent tiny, light-powered wires to modulate brain's electrical signals

Study reveals 15 new genes that influence face shape

'Loneliest tree in the world' offers evidence of Anthropocene's beginning

Chimpanzee self-control is related to intelligence

TECH SPACE
New phagocytosis model predicts which cells can eat other cells

Kin of 'world's ugliest animal' among fish hauled off Australia abyss

In Kenya, anti-poaching dogs are wildlife's best friends

Footage shows 'dumbo' octopod hatchling looks like a miniature adult

TECH SPACE
China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

Scientists report big improvements in HIV vaccine production

TECH SPACE
Hong Kong activist on trial over riots

China angered by theft of Terracotta Warrior's thumb

MGM China to open mega resort in Macau as high rollers return

China's former internet czar expelled from Communist Party

TECH SPACE
Thai navy says 11 million pill haul a record from Laos

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.