Medical and Hospital News  
IRON AND ICE
Meteorite strikes may create unexpected form of silica
by Staff Writers
Washington DC (SPX) Aug 27, 2020

X-ray diffraction images showing the new form of silica created by sending an intense shock wave through a sample of quartz using a specialized gas gun. When the x-rays bounce off repeating planes of a crystalline structure, they scatter. This creates a distinctive ring pattern. Each ring is associated with a different plane and together this data can tell researchers about the material's atomic-level architecture. Image is courtesy of Sally June Tracy, Stefan Turneaure, and Thomas Duffy.

When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site? What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

New work led by Carnegie's Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

"Quartz is one of the most abundant minerals in Earth's crust, found in a multitude of different rock types," Tracy explained. "In the lab, we can mimic a meteorite impact and see what happens."

Tracy and her colleagues - Washington State University's (WSU) Stefan Turneaure and Princeton University's Thomas Duffy, a former Carnegie Fellow - used a specialized cannon-like gas gun to accelerate projectiles into quartz samples at extremely high speeds - several times faster than a bullet fired from a rifle.

Special X-ray instruments were used to discern the crystal structure of the material that forms less than one-millionth of a second after impact. Experiments were carried out at the Dynamic Compression Sector (DCS), which is operated by WSU and located at the Advanced Photon Source, Argonne National Laboratory.

Quartz is made up of one silicon atom and two oxygen atoms arranged in a tetrahedral lattice structure. Because these elements are also common in the silicate-rich mantle of the Earth, discovering the changes quartz undergoes at high-pressure and -temperature conditions, like those found in the Earth's interior, could also reveal details about the planet's geologic history.

When a material is subjected to extreme pressures and temperatures, its internal atomic structure can be re-shaped, causing its properties to shift. For example, both graphite and diamond are made from carbon.

But graphite, which forms at low pressure, is soft and opaque, and diamond, which forms at high pressure, is super-hard and transparent. The different arrangements of carbon atoms determine their structures and their properties, and that in turn affects how we engage with and use them.

Despite decades of research, there has been a long-standing debate in the scientific community about what form silica would take during an impact event, or under dynamic compression conditions such as those deployed by Tracy and her collaborators. Under shock loading, silica is often assumed to transform to a dense crystalline form known as stishovite - a structure believed to exist in the deep Earth. Others have argued that because of the fast timescale of the shock the material will instead adopt a dense, glassy structure.

Tracy and her team were able to demonstrate that counter to expectations, when subjected to a dynamic shock of greater than 300,000 times normal atmospheric pressure, quartz undergoes a transition to a novel disordered crystalline phase, whose structure is intermediate between fully crystalline stishovite and a fully disordered glass. However, the new structure cannot last once the burst of intense pressure has subsided.

"Dynamic compression experiments allowed us to put this longstanding debate to bed," Tracy concluded. "What's more, impact events are an important part of understanding planetary formation and evolution and continued investigations can reveal new information about these processes."

Research Report: "Structural Response of Alpha-Quartz Under Plate-Impact Shock Compression"


Related Links
Carnegie Institution For Science
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Surrey academics develop a new method to determine the origin of stardust in meteorites
Guildford UK (SPX) Aug 12, 2020
Scientists have made a key discovery thanks to stardust found in meteorites, shedding light on the origin of crucial chemical elements. Meteorites are critical to understanding the beginning of our solar system and how it has evolved over time. However, some meteorites contain grains of stardust that predate the formation of our solar system and are now providing important information about how the elements in the universe formed. In a study published by Physical Review Letters, researchers ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Death toll in China restaurant collapse climbs to 29

More climbers successfully summit Mount Everest, death rate stays the same

Pentagon's AI to be applied to natural disasters, humanitarian assistance

Why do 'non-lethal' weapons maim and kill protesters?

IRON AND ICE
Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

IRON AND ICE
Being a jerk won't get you a promotion, study says

Each human gut hosts a unique community of viruses

Study: Humans have been sleeping on beds for 200,000 years

Humans have been cremating the dead since at least 7,000 B.C.

IRON AND ICE
Neurons can fuse, cause behavioral changes in nematodes

Polar bear kills man in Arctic Svalbard

Swiss to ban foreign trophy hunters from killing Alpine ibex

Zimbabwe probes deaths of 12 elephants near Hwange park

IRON AND ICE
US protesters rally against mandatory flu shots for students

Thousands arrested for 'virus-related crimes' in China; Hong Kong fears mass virus test

Polymers in water at dentist can prevent aerosol mists that spread germs

Fighting mosquito-borne diseases with mosquitoes

IRON AND ICE
Australia to probe foreign influence at universities

China arrests 12 fleeing HK by speedboat; Police sift the past to find crimes

China detains Australian journalist in latest blow to relations

Riot police disperse HK protesters on station beating anniversary

IRON AND ICE
Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

'Virtual kidnappings' warning for Chinese students in Australia

Mexico navy implicated in disappearance of 27 people

China says five sailors kidnapped off Nigeria

IRON AND ICE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.