. Medical and Hospital News .




BIO FUEL
Microbial Who-Done-It For Biofuels
by Lynn Yarris for Berkeley Lab News
Berkeley CA (SPX) Jul 26, 2013


The microbial world of biomass deconstruction became more clear with a JBEI/JGI/EMSL study of a thermophillic bacterial consortium adapted to switchgrass. This splatterplot is a visual representation of the consortium's metagenome. (Image courtesy of Patrik D'haeseleer, JBEI).

One of the keys to commercialization of advanced biofuels is the development of cost-competitive ways to extract fermentable sugars from lignocellulosic biomass. The use of enzymes from thermophiles - microbes that thrive at extremely high temperatures and alkaline conditions - holds promise for achieving this. Finding the most effective of these microbial enzymes, however, has been a challenge.

That challenge has now been met by a collaboration led by researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI).

Working with a compost-derived consortium of thermophillic bacterium adapted to grow on switchgrass, a leading potential fuel crop, and using a combination of metagenomic and metaproteomic technologies, the collaboration has identified individual microbial species whose enzymes were the most active in deconstructing the switchgrass biomass.

Major institutes in addition to JBEI participating in this collaboration included DOE's Joint Genome Institute (JGI), and EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL).

"This marks the first time that the functional roles of individual microbial populations within a consortium have been linked with specific enzyme activities, in this case cellulase and hemicellulase," says Steven Singer, director of JBEI's microbial communities program.

"Since these activities are broadly relevant to biofuel production, this is one of the first real-world applications being met by combining metagenomics and metaproteomics."

Singer, who is also a research scientist with Lawrence Berkeley National Laboratory (Berkeley Lab)'s Earth Sciences Division, is the senior author of a paper describing this research in the journal PLOS One titled "Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass." Co-authors are Patrik D'haeseleer, John Gladden, Martin Allgaier, Patrik Chain, Susannah Tringe, Stephanie Malfatti, Joshua Aldrich, Carrie Nicora, Errol Robinson, Ljiljana Pasa-Tolic, Philip Hugenholtz and Blake Simmons.

Advanced biofuels - liquid transportation fuels synthesized from the sugars in cellulosic biomass - offer a clean, green and renewable alternative to gasoline, diesel and jet fuels.

However, unlike the simple sugars in corn grain, the cellulose and hemicellulose in biomass are difficult to extract in part because they are embedded in a tough woody material called lignin. Thermophilic microbes are believed to be a rich source of cellulase and hemicellulase enzymes for lignocellulosic biomass deconstruction that are active at elevated temperatures and in the presence of pretreatment chemicals such as ionic liquids.

"Natural microbial communities that deconstruct biomass, such as those found in cow rumen or compost piles, are often too complex to decipher roles for individual microbial populations," says Singer.

"However, enrichment cultures established with defined substrates and at constant temperatures offer the possibility of simplifying these complex microbial communities and identifying functional roles for specific populations within the community."

As part of their efforts to develop a cost-effective way to deconstruct lignocellulosic biomass into sugars for fuel, researchers in JBEI's Deconstruction Division cultivated the switchgrass-feeding, compost-derived consortium of thermophiles.

"Using pretreated switchgrass at temperatures up to 80 degrees Celsius, we demonstrated that this consortium is an excellent source of enzymes for the development of enzymatic cocktails tailored to biorefinery processing conditions," says Blake Simmons, a chemical engineer who heads JBEI's Deconstruction Division and was a member of this research collaboration.

To identify the functional roles of community members within the switchgrass-feeding consortium, Singer, Simmons and their colleagues first used shotgun sequencing, a powerful metagenomics technique that enabled them to determine the metabolic potential of all the members of the consortium. They then used metaproteomic measurements to identify those enzymes, predicted by metagenomic analysis, that were actually produced by the microbial community.

"Doing metagenomics by shotgun sequencing is a bit like raiding a toy store and tossing hundreds of jigsaw puzzles onto a pile," says Patrik D'haeseleer, a computational systems biologist who holds appointments with both JBEI and the Lawrence Livermore National Laboratory and is lead author of the PLOS One paper.

"Each individual puzzle piece may carry some useful information, but you only start to see the bigger picture once you reassemble the pieces," D'haeseleer says.

"Our collaborators at JGI used deep sequencing of millions of small pieces of DNA, and generated a partial assembly based on direct matches between the pieces. We developed a novel phylogenetic binning method to separate those partially assembled pieces into the major bacterial genomes in the consortium. This allowed us to then model the metabolic potential of all those members of the consortium."

Analysis of metagenomic sequencing data identified the most abundant microbial populations in the consortium to be closely related strains of Thermus thermophilus and Rhodothermus marinus.

However, based on the assigned fractions of the switchgrass deconstruction proteome, the strains showing the most active role in switchgrass deconstruction were Gemmatimonadetes and Paenibacillus. By comparison, the more numerous Rhodothermus strain contributed fewer enzymes to biomass deconstruction

"By leveraging the unique capabilities of the JGI and EMSL with those at JBEI, we're developing a more comprehensive functional understanding of how microbial consortia work to breakdown lignocellulose, and identifying the genes and enzymes that are responsible for this deconstruction," Simmons says.

"The list of genes and enzymes generated by this study has been placed into our expression pipeline and are being used to develop optimized cocktails that are capable of generating high sugar yields from pretreated lignocellulosic biomass."

.


Related Links
Joint BioEnergy Institute
Joint Genome Institute
Environmental Molecular Sciences Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





BIO FUEL
Microorganisms found in salt flats could offer new path to green hydrogen fuel
Argonne IL (SPX) Jul 23, 2013
A protein found in the membranes of ancient microorganisms that live in desert salt flats could offer a new way of using sunlight to generate environmentally friendly hydrogen fuel, according to a new study by researchers at the U.S. Department of Energy's Argonne National Laboratory. Argonne nanoscientist Elena Rozhkova and her colleagues combined a pigment called bacteriorhodopsin with s ... read more


BIO FUEL
Malaysia says will get tough on illegal immigrants

More steam in Fukushima reactor building: TEPCO

Fukushima steam still baffling: TEPCO

The best defense against catastrophic storms: Mother Nature, say Stanford researchers

BIO FUEL
Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

GPS III satellite antenna assemblies ready for installation

Lockheed Martin GPS III Prototype Validates Test Facilities For Future Flight Satellites

BIO FUEL
World's first IVF baby born after preimplantation genome sequencing is now 11 months old

Extinct Ancient Ape Did Not Walk Like a Human

Japanese women retake top spot for life expectancy

Archaeologist says he's uncovered King David's palace

BIO FUEL
Renegade hippo captured in Cape Town

Populations of grassland butterflies decline almost 50 percent over two decades

Wolf found in Netherlands, first for 150 years

Current efforts will not save the world's most endangered cat

BIO FUEL
Burundi's longest cholera epidemic kills at least 17

New viruses said unlike any form of life known to date

China H7N9 survivor gives birth: report

Huge viruses may open 'Pandora's' box: French study

BIO FUEL
Work on world's tallest building stopped in China: media

China charges Bo Xilai with corruption, abuse of power

Chinese man kills one-child policy officials: media

'Wild Swans' author Jung Chang speaks of China dream

BIO FUEL
Global gangs rake in $870 bn a year: UN official

Mexican generals freed after cartel charges dropped

Mexicans turn to social media to report on drug war

Sydney customs officers ran drugs ring, report says

BIO FUEL
China's central bank injects $2.8 bn to add liquidity

China to maintain steady growth in second half: govt

Emerging Europe set for next growth curve: analysts

Walker's World: Brexit or Grexit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement