Medical and Hospital News  
CHIP TECH
Miniaturizable magnetic resonance
by Staff Writers
Edmonton, Canada (SPX) Nov 16, 2015


A microscopic garnet crystal was the key to unlocking the torque-mixing magnetic resonance spectroscopy technique. A focused gallium ion beam sculpted the single-crystal, one micrometer diameter yttrium iron garnet disk from within a much larger starting piece of the magnetic gemstone. The image is an angled-perspective scanning electron micrograph, showing the microdisk before it was placed on the nanomechanical sensor with which precise mechanical torque signatures of magnetic resonance were observed. Image credit: D. Vick and F. Fani Sani (National Institute for Nanotechnology, University of Alberta)

A garnet crystal only one micrometre in diameter was instrumental in a University of Alberta team of physicists creating a route to "lab-on-a-chip" technology for magnetic resonance, a tool to simplify advanced magnetic analysis for device development and interdisciplinary science.

"To most, a gem so tiny would be worthless, but to us, it's priceless," says Mark Freeman, University of Alberta physics professor and Canada Research Chair in condensed matter physics. "It was the perfect testbed for this new method."

In the new method of measuring magnetic resonance, published in the November 13, 2015 issue of the journal Science, the signal is a mechanical twisting motion, detected with light. The new approach is more naturally suited to miniaturization than the current method, which creates an electrical signal by induction.

In fact, the entire magnetic sensor unit created with the new technology can fit on a chip as small as one square centimetre.

"Our discovery makes the case that magnetic resonance is in essence both a mechanical and magnetic phenomenon on account of magnetic dipoles possessing angular momentum," says Freeman, noting that the concept of magnetism makes more sense when you consider its mechanical properties.

"Magnetism needs better spin doctors than it has had. Everything in the world is magnetic on some level, so the possibilities for scientific applications of this new technique are endless."

The discovery opens up a world of possible miniaturized platforms for health care, technology, energy, environmental monitoring, and space exploration. Explains Freeman, "There are immediate applications in physics, Earth sciences, and engineering, but we have only looked at electron spin resonance. Proton spin resonance is the next big step that will open up applications in chemistry and biology."

To foster the development of these applications, Freeman's team plans to openly share the information about how to execute this technique, feeding the current maker movement.

It was important to the team not to patent this discovery--as is often the pressure for scientists conducting these types of discoveries--but instead to publish their findings in a scientific journal to provide open-source access that will advance the field.

"Ultimately, the way science makes progress is through people sharing discoveries," says Freeman, adding that he hopes others will adapt the technology for their own needs.

Freeman, who worked for IBM before coming to the University of Alberta, believes that chip-based miniaturizable mechanical devices--by virtue of their small scale and superior performance--will come to replace some electronic sensors in devices like smart phones and on space exploration probes.

"It's an elegant solution to a challenging problem, simple but not obvious," says Freeman, who has been working on the experimental challenge solved in this paper for the past two decades.

"Working in condensed matter physics is like having the best seat at an awe-inspiring parade of progress."

Postdoctoral fellow Joseph Losby, PhD candidate Fatemeh Fani Sani, and former undergraduate student Dylan Grandmont spearheaded the research under the guidance of Freeman, along with collaborators at the National Institute for Nanotechnology and the University of Manitoba. The findings, "Torque-Mixing Magnetic Resonance Spectroscopy," were published in the journal Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Alberta
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Electrochemical etching down to one-monolayer towards high-Tc superconductivity
Sendai, Japan (SPX) Nov 12, 2015
Iron selenide (FeSe) is an attracting superconducting material since the superconducting transition temperature (Tc) is enhanced from 8 K in bulk form toward 65 K in one-monolayer form. However, systematic thickness dependence of electrical measurement has been difficult to address. A team of researchers at Tohoku University's Institute for Materials Research (IMR), has realized layer-by-l ... read more


CHIP TECH
China landslide deaths rise to 25

A new tool to guide recovery from disasters

German minister cautions against terror-refugee link

Cold threatens 700,000 children in eastern Ukraine: UNICEF

CHIP TECH
LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

CHIP TECH
Early proto-porcelain from China likely made from local materials

Environment and climate helped shape varied evolution of human languages

Divisive religious beliefs humanity's biggest challenge: Grayling

Predicting the human genome using evolution

CHIP TECH
Half of all natural history specimens may have the wrong name

Freshwater fish, amphibians supercharge their ability to see infrared light?

Implantable wireless devices can trigger and block pain signals

An arms race among venomous animals

CHIP TECH
A giant fullerene system inhibits the infection by an artificial Ebola virus

Monkeys in Asia harbor virus from humans, other species

Over 230,000 vaccinated in Iraq anti-cholera campaign

What ever happened to West Nile virus

CHIP TECH
Beauty queen in Miss World standoff with China over rights

Senior US lawmaker tours Tibet six years after Beijing 'refusal'

Police torture rife in China despite reforms: Amnesty

Beijing's Communist Party deputy chief probed for graft

CHIP TECH
Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

CHIP TECH
China weighs on Asia-Pacific business outlook

Eurozone economy cools as China slowdown hurts exports

Asian appetite for luxury boosts global art and jewel auctions

China October bank lending halves on weak demand









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.