Medical and Hospital News  
STELLAR CHEMISTRY
Molecular device turns infrared into visible light
by Staff Writers
Lausanne, Switzerland (SPX) Dec 03, 2021

Artistic view of the nanoparticle-in-groove plasmonic cavities. Molecules cover the gold film and are sandwiched between the groove and the 150-nm large nanoparticle. The infrared signal of interest comes from below the substrate while the pump laser providing energy for upconversion comes from the top. Both are focused by the cavity onto the molecules, and interact with their internal vibrations to generate an upconverted copy of the infrared signal at visible frequencies (bright spot).

Light is an electromagnetic wave: it consists of oscillating electric and magnetic fields propagating through space. Every wave is characterized by its frequency, which refers to the number of oscillations per second, measured in Hertz (Hz). Our eyes can detect frequencies between 400 and 750 trillion Hz (or terahertz, THz), which define the visible spectrum. Light sensors in cell phone cameras can detect frequencies down to 300 THz, while detectors used for internet connections through optical fibers are sensitive to around 200 THz.

At lower frequencies, the energy transported by light isn't enough to trigger photoreceptors in our eyes and in many other sensors, which is a problem given that there is rich information available at frequencies below 100 THz, the mid- and far-infrared spectrum. For example, a body with surface temperature of 20 C emits infrared light up to 10 THz, which can be "seen" with thermal imaging. Also, chemical and biological substances feature distinct absorption bands in the mid-infrared, meaning that we can identify them remotely and non-destructively by infrared spectroscopy, which has myriads of applications.

Turning infrared into visible light
Scientists at EPFL, Wuhan Institute of Technology, the Valencia Polytechnic University, and AMOLF in the Netherlands, have now developed a new way to detect infrared light by changing its frequency to that of visible light. The device can extend the "sight" of commonly available and highly sensitive detectors for visible light far into the infrared. The breakthrough is published in Science.

Frequency conversion is not an easy task. The frequency of light is a fundamental that cannot easily change by reflecting light on a surface or passing it through a material because of the law of energy conservation.

The researchers worked around this by adding energy to infrared light with a mediator: tiny vibrating molecules. The infrared light is directed to the molecules where it is converted into vibrational energy. Simultaneously, a laser beam of higher frequency impinges on the same molecules to provide the extra energy and convert the vibration into visible light. To boost the conversion process, the molecules are sandwiched between metallic nanostructures that act as optical antennas by concentrating the infrared light and laser energy at the molecules.

A new light
"The new device has a number of appealing features," says Professor Christophe Galland at EPFL's School of Basic Sciences, who led the study. "First, the conversion process is coherent, meaning that all information present in the original infrared light is faithfully mapped onto the newly created visible light. It allows high-resolution infrared spectroscopy to be performed with standard detectors like those found in cell-phone cameras. Second, each device is about a few micrometers in length and width, which means it can be incorporated into large pixel arrays. Finally, the method is highly versatile and can be adapted to different frequencies by simply choosing molecules with different vibrational modes."

"So far, however, the device's light-conversion efficiency is still very low," cautions Dr Wen Chen, first author of the work. "We are now focusing our efforts in further improving it" - a key step toward commercial applications.

Research Report: "Continuous-Wave Frequency Upconversion with a Molecular Optomechanical Nanocavity."


Related Links
Swiss Federal Institute of Technology Lausanne
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Molding, patterning and driving liquids with light
Houston TX (SPX) Dec 01, 2021
Jiming Bao, professor of electrical and computer engineering at the University of Houston, has developed a new fluid that can be cut open by light and demonstrated macroscopic depression of ferrofluid, the kind of fluid that can be moved around with a magnet. The new method of molding and deforming water has potential applications in adaptive optics, mass transport and microfluidics manufacturing and molding of micro and nanostructures. Weighty implications for something that can be done with a fe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How far is Fukushima nuclear accident contaminated water from us?

Study: People choose to learn about health, world news based on feelings

Twitter is the social network most resistant to conspiracy theory beliefs

UN says aid needs will surge in 2022 amid pandemic, conflict

STELLAR CHEMISTRY
Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

Galileo pathfinder de-commissioned after 16 years of in-orbit service

Galileo satellites in place for launch

STELLAR CHEMISTRY
Ancient human relative, Australopithecus sediba, 'walked like a human, but climbed like an ape'

Taking it easy as you get older could be the wrong move

Prehistoric mums may have cared for kids better than we thought

The brain uses bodily signals to regulate fear

STELLAR CHEMISTRY
Satellites reveal Ethiopian elephants under threat

Nearly 30 percent of UK birds endangered, report warns

30 South African white rhino relocated to Rwanda in a Boeing 747

Endangered gazelles spring back in Jerusalem park

STELLAR CHEMISTRY
UN biodiversity summit postponed over new Covid variant

Biden marks World AIDS Day with plan to eradicate disease

Chinese city suspends rail imports after fresh Covid outbreak

AIDS timeline: Four decades but still no silver bullet

STELLAR CHEMISTRY
Beijing's Macau envoy given new 'national security' role: state media

Macau junket firm closes VIP salons after boss arrest

Macau junket boss questioned over China arrest warrant

'Simpsons' Tiananmen episode missing from Disney+ in Hong Kong

STELLAR CHEMISTRY
Living among the mafia blurs lines in Italy's south

Danish forces kill four pirates off Nigeria: navy

4 Colombian soldiers killed in latest ambush by drug gang

Four Colombian soldiers killed in 'retaliation' for drug lord's arrest: army

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.