Medical and Hospital News
TIME AND SPACE
Monitoring of radio galaxy M87 confirms black hole spin
The black hole's spin axis is assumed to align vertically. The jet's direction is almost perpendicular to the disk. The misalignment between the black hole spin axis and the disk rotation axis triggers the precession of the disk and jet.
Monitoring of radio galaxy M87 confirms black hole spin
by Staff Writers
Shanghai, China (SPX) Sep 28, 2023

The nearby radio galaxy M87, located 55 million light-years from the Earth and harboring a black hole 6.5 billion times more massive than the Sun, exhibits an oscillating jet that swings up and down with an amplitude of about 10 degrees, confirming the black hole's spin.

The study, which was headed by Chinese researcher Dr. CUI Yuzhu and published in Nature on Sept. 27, was conducted by an international team using a global network of radio telescopes.

Through extensive analysis of telescope data from 2000-2022, the research team revealed a recurring 11-year cycle in the precessional motion of the jet base, as predicted by Einstein's General Theory of Relativity. The study links the dynamics of the jet with the central supermassive black hole, offering evidence that M87's black hole spins.

Supermassive black holes at the center of active galaxies-the most disruptive celestial objects in our universe-can accrete tremendous amounts of material due to the extraordinary gravitational force and power of plasma outflows, known as jets, that approach the speed of light and extend thousands of light-years away.

The energy transfer mechanism among supermassive black holes and their accretion disks and relativistic jets has puzzled physicists and astronomers for over a century. A prevailing theory suggests that energy can be extracted from a spinning black hole, allowing some material surrounding the supermassive black hole to be ejected with great energy. However, the spin of supermassive black holes, a crucial factor in this process and the most fundamental parameter other than black hole mass, had not been directly observed.

In this study, the research team focused on M87, where the first observational astrophysical jet was observed in 1918. Thanks to its proximity, the jet formation regions close to the black hole can be resolved in detail with Very Long Baseline Interferometry (VLBI), as represented by recent black hole shadow imaging with the Event Horizon Telescope (EHT). By analyzing VLBI data from M87 obtained over the last 23 years, the team detected the periodic precessional jet at its base, offering insight into the status of the central black hole.

At the heart of this discovery lies the critical question: What force in the universe can alter the direction of such a powerful jet? The answer could be hidden in the behavior of the accretion disk, a configuration related to the central supermassive black hole. As infalling materials orbit the black hole due to their angular momenta, they form a disk-like structure before gradually spiraling inwards until they are fatefully drawn into the black hole. However, if the black hole is spinning, it exerts a significant impact on surrounding spacetime, causing nearby objects to be dragged along its axis of rotation, a phenomenon known as "frame-dragging," which was predicted by Einstein's General Theory of Relativity.

The research team's extensive analysis indicates that the rotational axis of the accretion disk misaligns with the black hole's spin axis, leading to a precessional jet. Detecting this precession provides unequivocal evidence that the supermassive black hole in M87 is indeed spinning, thus enhancing our understanding of the nature of supermassive black holes.

"We are thrilled by this significant finding," said CUI Yuzhu, a postdoctoral researcher at Zhejiang Lab, a research institution in Hangzhou, and lead and corresponding author of the paper. "Since the misalignment between the black hole and the disk is relatively small and the precession period is around 11 years, accumulating high-resolution data tracing M87's structure over two decades and thorough analysis are essential to obtain this achievement."

"After the success of black hole imaging in this galaxy with the EHT, whether this black hole is spinning or not has been a central concern among scientists," added Dr. Kazuhiro Hada from the National Astronomical Observatory of Japan. "Now anticipation has turned into certainty. This monster black hole is indeed spinning."

This work made use of a total of 170 epochs of observations obtained by the East Asian VLBI Network (EAVN), the Very Long Baseline Array (VLBA), the joint array of KVN and VERA (KaVA), and the East Asia to Italy Nearly Global (EATING) network. In total, more than 20 telescopes across the globe contributed to this study.

Radio telescopes in China also made contribution to this project, including China's Tianma 65-meter radio telescope with its huge dish and high sensitivity at millimeter wavelengths. In addition, Xinjiang 26-meter radio telescope enhances the angular resolution of EAVN observations. The good quality data with both high sensitivity and high angular resolution are essential to obtain this achievement.

"The in-building Shigatse 40-meter radio telescope by Shanghai Astronomical Observatory, will further improve the imaging capability of EAVN at millimeters. Especially, the Tibetan Plateau, where the telescope is located, owns one of the most excellent site conditions for (sub-)millimeter wavelength observations. It fulfills our expectations to promote domestic sub-millimeter facilities for astronomical observations," said Prof. SHEN Zhiqiang, Director of the Shanghai Astronomical Observatory of the Chinese Academy of Sciences.

While this study sheds light on the mysterious world of supermassive black holes, it also presents formidable challenges. The accretion disk's structure and the exact value of the M87 supermassive black hole's spin are still highly uncertain. This work also predicts that there will be more sources with this configuration, thus challenging scientists to discover them.

Research Report:Precessing jet nozzle connecting to a spinning black hole in M87

Related Links
Shanghai Astronomical Observatory
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Supermassive black holes alter galactic chemistry
Tokyo, Japan (SPX) Sep 18, 2023
New research shows that the supermassive black hole at the center of a galaxy can have a direct impact on the chemical distribution of the host galaxy. This provides another piece of the puzzle for understanding how galaxies evolve. It is well known that active supermassive black holes can produce major changes their host galaxies by heating up and removing the interstellar gas in the galaxy. But the compact sizes of black holes, the long distances from Earth, and obscuration by dust in the galaxi ... read more

TIME AND SPACE
Four more officials held after Libya flood disaster

'Negligent' Iraq officials sacked for wedding fire

Senegal navy intercepts more than 600 migrants in three days

Libya flood relief hampered by 'turf wars' and division

TIME AND SPACE
Trimble and Kyivstar to provide GNSS correction services in Ukraine

Galileo becomes faster for every user

Present and future of satellite navigation

New Galileo station goes on duty

TIME AND SPACE
Does a brain in a dish have moral rights?

Fears for ancient Cyrene after Libya floods

Need to hunt small prey compelled humans to make better weapons and smarten up

Hong Kong's top court rules to recognise same-sex partnerships

TIME AND SPACE
Not so black and white? Panda fibs fuel anti-US vibe in China

Bird flu kills 400 seals, sea lions in Uruguay

Extreme heat likely to wipe out humans and mammals in the distant future

Scientists uncover a scaly surprise with new pangolin species

TIME AND SPACE
WHO recommends second vaccine against malaria

WHO calls on China for 'full access' for Covid investigators: FT

UN warns of disease threat in flood-hit Libyan city

Dire hygiene spells new threat for Morocco quake survivors

TIME AND SPACE
Millions travel across China as national holiday kicks off

China's Evergrande says boss suspected of crimes after trading suspended

Police hold boss of troubled developer China Evergrande: report

Former China football chief charged with corruption

TIME AND SPACE
Hong Kong arrests 6,400 in anti-triad bust

Myanmar junta angry at China over crime blockbuster 'tarnishing'

Guatemala sends troops to drug-infested border with Mexico

Bitcoin machines, rocket-launchers seized in Venezuela prison

TIME AND SPACE
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.