Medical and Hospital News  
TECH SPACE
Mountains of waste could lead to new US manufacturing, jobs
by Staff Writers
College Station TX (SPX) May 18, 2017


A waste material from the paper and pulp industry soon could be made into anything from tennis rackets to cars, according to new findings by Texas A and M AgriLife Research scientists. Image courtesy of Texas A and M AgriLife Research.

Waste material from the paper and pulp industry soon could be made into anything from tennis rackets to cars. "We have overcome one of the industry's most challenging issues by discovering how to make good quality carbon fiber from waste," said Dr. Joshua Yuan, Texas A and M AgriLife Research scientist and associate professor of plant pathology and microbiology in College Station.

The research was published recently in Green Chemistry, the peer-reviewed journal of the Royal Society of Chemistry. "People have been thinking about using lignin to make carbon fiber for many years, but achieving good quality has been an issue," Yuan said.

About 50 million tons of lignin - or structural part of a plant - piles up each year as waste from the U.S. paper and pulping industry, he said. Additional lignin could come from biorefineries that use plants to produce ethanol, yielding another 100 million to 200 million tons of lignin waste each year. Yet only about 2 percent of the lignin waste is currently recycled into new products, Yuan said.

"Lignin is considered as one of the most abundant biopolymers in the world," he said. "All this waste accumulates, and it will be great to use it for something."

Yuan's research team has had several successes in making fuel and bioproducts from lignin. But even the biofuel making process leaves a large stockpile of waste. That led them to consider the possibility of making carbon fiber material.

Carbon fiber is not a new concept. It has been toyed with since 1860 - mostly for light bulbs originally - and is known for high strength, low weight and heat tolerance.

But it has been expensive to produce by traditional means.

"If you cannot produce quality carbon material, it's really not useful," Yuan said.

So the team examined lignin more closely.

"What we found is that lignin is a mixture of many molecules of many sizes and different chemical properties. Through fractionation, we separated lignin into different parts, and then we found that certain parts of lignin are very good for high quality carbon fiber manufacturing," he explained.

The researcher noted that lignin is a complex molecule, but when the high-density, high molecular weight portion is separated from the rest, it has a uniform structure that allows the formation of high quality carbon fiber.

"We are still improving and fine-tuning the quality, but eventually this carbon fiber could be used for windmills, sport materials and even bicycles and cars," he said. "Carbon fiber is much lighter but has the same mechanical strength as other materials used for those products now. This material can be used for a lot of different applications.

"The beauty of this technology is that it allows us to use lignin completely. Basically what we do is fractionate lignin so that the high molecular weight fraction can be used for carbon fiber and the low molecular weight fraction can be used use for bioplastics and products like asphalt binder modifier used on roads."

Yuan envisions a multi-stream integrated biorefinery in which lignin is separated in one location so that a variety of materials - the high density carbon fibers and the low density bioplastics, along with biofuels from plant feedstock like grasses - could be made at one facility.

"When we are able to use the same biomass to produce different things, that allows the best economic return by being sustainable," he said. "Eventually that would lead to increasing jobs and enhancing rural economic growth.

"And the entire supply chain is in the United States, which means the jobs would be here. The biomass is grown, harvested and transported here. It would be difficult to ever ship that much waste to another country for production. It all stays here," Yuan said. "It would put agriculture production and industry together in a bioeconomy making renewable products."

TECH SPACE
Collective electrostatic effects are used to intentionally manipulate material properties
Styria, Austria (SPX) May 17, 2017
Computational materials design is traditionally used to improve and further develop already existing materials. Simulations grant a deep insight into the quantum mechanical effects which determine material properties. Egbert Zojer and his team at the Institute of Solid State Physics of TU Graz go a decisive step beyond that: they use computer simulations to propose an entirely new concept ... read more

Related Links
Texas A and M AgriLife Communications
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Hong Kong 'Snowden refugees' face deportation: lawyer

Healthcare bill inspires road rage: Tenn. woman tries to run Congressman off road

New fiber-based sensor could quickly detect structural problems in bridges and dams

Marine Le Pen: far-right firebrand who has shaken up French politics

TECH SPACE
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

TECH SPACE
Research suggests the ideal leader resembles his or her subordinates

South African cave yields yet more fossils of a newfound relative

Changes in Early Stone Age tool production have 'musical' ties

Homo naledi's surprisingly young age opens up more questions on where we come from

TECH SPACE
Malaysia seizes smuggled tortoises worth $300,000

New Zealand's penguins facing extinction, scientists warn

Cornell researches black bear boom in New York

The first microbial supertree from figure-mining thousands of papers

TECH SPACE
Can crab shells provide a 'green' solution to malaria?

Mosquito-borne viruses like Zika may be spread at lower temperatures

10-year lifespan gain for some HIV patients: study

Stanford researchers analyze what a warming planet means for mosquito-borne diseases

TECH SPACE
China frees human rights lawyer on bail: Amnesty

China lawyer's wife seeks US asylum after brazen escape

China wants its anthem sung, but maybe not at parties

Chinese human rights lawyers seen as enemies of the state

TECH SPACE
UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.