Medical and Hospital News  
EARLY EARTH
Much of Earth's nitrogen was locally sourced
by Staff Writers
Houston TX (SPX) Jan 22, 2021

illustration only

Where did Earth's nitrogen come from? Rice University scientists show one primordial source of the indispensable building block for life was close to home.

The isotopic signatures of nitrogen in iron meteorites reveal that Earth likely gathered its nitrogen not only from the region beyond Jupiter's orbit but also from the dust in the inner protoplanetary disk.

Nitrogen is a volatile element that, like carbon, hydrogen and oxygen, makes life on Earth possible. Knowing its source offers clues to not only how rocky planets formed in the inner part of our solar system but also the dynamics of far-flung protoplanetary disks.

The study by Rice graduate student and lead author Damanveer Grewal, Rice faculty member Rajdeep Dasgupta and geochemist Bernard Marty at the University of Lorraine, France, appears in Nature Astronomy.

Their work helps settle a prolonged debate over the origin of life-essential volatile elements in Earth and other rocky bodies in the solar system.

"Researchers have always thought that the inner part of the solar system, within Jupiter's orbit, was too hot for nitrogen and other volatile elements to condense as solids, meaning that volatile elements in the inner disk were in the gas phase," Grewal said.

Because the seeds of present-day rocky planets, also known as protoplanets, grew in the inner disk by accreting locally sourced dust, he said it appeared they did not contain nitrogen or other volatiles, necessitating their delivery from the outer solar system. An earlier study by the team suggested much of this volatile-rich material came to Earth via the collision that formed the moon.

But new evidence clearly shows only some of the planet's nitrogen came from beyond Jupiter.

In recent years, scientists have analyzed nonvolatile elements in meteorites, including iron meteorites that occasionally fall to Earth, to show dust in the inner and outer solar system had completely different isotopic compositions.

"This idea of separate reservoirs had only been developed for nonvolatile elements," Grewal said. "We wanted to see if this is true for volatile elements as well. If so, it can be used to determine which reservoir the volatiles in present-day rocky planets came from."

Iron meteorites are remnants of the cores of protoplanets that formed at the same time as the seeds of present-day rocky planets, becoming the wild card the authors used to test their hypothesis.

The researchers found a distinct nitrogen isotopic signature in the dust that bathed the inner protoplanets within about 300,000 years of the formation of the solar system. All iron meteorites from the inner disk contained a lower concentration of the nitrogen-15 isotope, while those from the outer disk were rich in nitrogen-15.

This suggests that within the first few million years, the protoplanetary disk divided into two reservoirs, the outer rich in the nitrogen-15 isotope and the inner rich in nitrogen-14.

"Our work completely changes the current narrative," Grewal said. "We show that the volatile elements were present in the inner disk dust, probably in the form of refractory organics, from the very beginning. This means that contrary to current understanding, the seeds of the present-day rocky planets - including Earth - were not volatile-free."

Dasgupta said the finding is significant to those who study the potential habitability of exoplanets, a topic of great interest to him as principal investigator of CLEVER Planets, a NASA-funded collaborative project exploring how life-essential elements might come together on distant exoplanets.

"At least for our own planet, we now know the entire nitrogen budget does not come only from outer solar system materials," said Dasgupta, Rice's Maurice Ewing Professor of Earth, Environmental and Planetary Sciences.

"Even if other protoplanetary disks don't have the kind of giant planet migration resulting in the infiltration of volatile-rich materials from the outer zones, their inner rocky planets closer to the star could still acquire volatiles from their neighboring zones," he said.

A NASA FINESST grant, a NASA Science Mission Directorate grant to support CLEVER Planets, the European Research Council, and the Lodieska Stockbridge Vaughan Fellowship at Rice supported the research.

Research paper


Related Links
Rice University
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Scientists characterize a dinosaur cloaca, or vent, for the first time
Washington DC (UPI) Jan 19, 2021
For the first time, scientists have described the cloaca, or vent, of a dinosaur - the all-purpose opening used for reproduction and waste disposal. Many mammals have distinct openings for defecating, urinating and reproduction, but most vertebrates boast a single hole. The latest discovery, published Tuesday in the journal Current Biology, suggests dinosaurs were no different. Over the last decade, scientists have unearthed dinosaur fossils featuring feathers, as well as preserved skin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Indonesian medics overwhelmed by quake casualties

Rescuers scramble to free Chinese miners trapped underground

China rescuers drill new 'lifelines' to trapped gold miners

China defends Covid-19 response after criticism by experts

EARLY EARTH
NASA advancing global navigation satellite system capabilities

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

EARLY EARTH
Objects suggest Europeans used standardized money 4,000 years ago

Deep sleep takes out the trash

Earliest human culture lasted 20,000 years later than previously thought

Identical twins not so identical after all: study

EARLY EARTH
Butterflies create jet propulsion with a clap of their wings

Babysitting birds help elderly warbler parents raise their young

Israel studies new forest home for endangered mountain gazelle

Scientists observe electric eels hunting in groups

EARLY EARTH
Chile approves Chinese coronavirus vaccine

Scientists can detect new COVID-19 variants by analyzing wastewater

Serbia starts vaccination with Chinese-made Sinopharm

China latest of 60 nations with UK virus strain as US to rejoin WHO

EARLY EARTH
China sanctions Pompeo, Trump officials for violating 'sovereignty'

Alibaba's Jack Ma appears for first time since regulatory crackdown

Imprisoned Chinese rights lawyer in poor health: wife

Hong Kong national security police make 11 new arrests

EARLY EARTH
UK police given more time to hold tanker 'hijack' seven

Seven held for attempted hijacking off UK coast

EARLY EARTH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.