Medical and Hospital News  
TIME AND SPACE
Multiple laser beamlets show better electron and ion acceleration
by Staff Writers
Osaka, Japan (SPX) Jul 26, 2019

Efficient high energy electron generation by interfering multiple laser beamlets. (a) Experimentally observed interference pattern, (b) Electromagnetic field energy obtained by the corresponding PIC simulation, (c) Electron energy spectra measured in the experiment. The total laser incident energies are same in 1 beamlet and 4 beamlets cases.

A research team led by Osaka University showed how multiple overlapping laser beams are better at accelerating electrons to incredibly fast speeds, as compared with a single laser. This method can lead to more powerful and efficient X-ray and ion generation for laboratory astrophysics, cancer therapy research, as well as a path toward controlled nuclear fusion.

High-energy density physics is a field of study that deals with conditions much closer the chaotic moments immediately following the Big Bang than those commonly encountered on Earth.

However, being able to produce and control intense beams of light, or very fast-moving electrons, has many practical benefits. These include the ability to make very bright X-rays needed for visualizing ultrafast deformation of matter, or conducting experiments that mimic the cosmological conditions near the surface of a star.

However, it is often tricky to keep efficiently accelerating electron beams with intense laser beams because of complex interactions between the laser and electrons. Previously, very expensive optics or patterned targets were required to transfer laser energy to the electron beam energy.

In a new study, researchers at Osaka University showed how splitting the laser beam into four coherent smaller beams, called beamlets, allows more energy to be transferred to electrons. This was accomplished by creating specific light interference patterns that keep the electrons on track.

"Just like overlapping ripples in pond can create complex wave structures, we can use four laser beamlets to precisely control the environment to best accelerate the electrons," explains first author Morace.

They found that the simultaneous irradiation of multiple laser beams at a single point allows for highly efficient laser-driven particle acceleration. Using light interference patterns instead of physical targets allows for better control and increased energy transfer.

The team sees this as just the beginning of the new technique. "This research shows how new, high-performance lasers systems utilizing multi-beam coupling can be developed," says senior author Kodama. "This means that the method may soon appear in biology departments or fusion power plants."

Research Report: "Enhancing laser beam performance by interfering intense laser beamlets"


Related Links
Osaka University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Physicists find first possible 3D quantum spin liquid
Houston TX (SPX) Jul 22, 2019
There's no known way to prove a three-dimensional "quantum spin liquid" exists, so Rice University physicists and their collaborators did the next best thing: They showed their single crystals of cerium zirconium pyrochlore had the right stuff to qualify as the first possible 3D version of the long-sought state of matter. Despite the name, a quantum spin liquid is a solid material in which the weird property of quantum mechanics - entanglement - ensures a liquidlike magnetic state. In a pape ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Britain to send 250 troops to U.N. peacekeeping mission in Mali

Hospital ship USNS Comfort arrives in Costa Rica

Climate change increasing hurricanes, storms, floods, North Carolina records show

Probe opened in France over radioactive water rumours

TIME AND SPACE
European Galileo satellite navigation system resumes Initial Services

An AI technology to reveal the characteristics of animal behavior only from the trajectory

Europe's Galileo GPS system back after six-day outage

Europe's GPS rival Galileo suffers outage

TIME AND SPACE
Stone tool changes may show how Mesolithic hunter-gatherers responded to changing climate

Working memory in chimpanzees, humans works similarly

Machine-meshed super-humans remain stuff of fantasy

Huge Neolithic settlement unearthed near Jerusalem

TIME AND SPACE
Aussie drug offers hope for stamping out wombat-killing disease

Different genes control lifespan, healthspan, worm study says

Study details differences in gene expression among male, female mammals

Fear of humans influences behavior of predators, rodents

TIME AND SPACE
In eastern DR Congo, influx of Ebola money is source of friction

Avian malaria may explain decline of London's house sparrow

Buzz off: breakthrough technique eradicates mosquitoes

Genomic analysis reveals details of first historically recorded plague pandemic

TIME AND SPACE
China says army can be deployed at Hong Kong's request

Li Peng, the 'Butcher of Beijing', dies aged 90

Anger soars over vicious mob attack on Hong Kong protesters

Trump praises China response to Hong Kong protests

TIME AND SPACE
Amid fentanyl crackdown, Mexico risks 'balloon effect'

Spanish and E.Guinea navy rescue 20 crew from pirate hijacking

Brazil's Bolsonaro eases rules for gun enthusiasts

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.