Medical and Hospital News
MOON DAILY
NASA Tests New Ways to Stick the Landing in Challenging Terrain
illustration only
NASA Tests New Ways to Stick the Landing in Challenging Terrain
by Lee Ann Obringer for NASA News
Washington DC (SPX) Jun 02, 2025

Advancing new hazard detection and precision landing technologies to help future space missions successfully achieve safe and soft landings is a critical area of space research and development, particularly for future crewed missions. To support this, NASA's Space Technology Mission Directorate (STMD) is pursuing a regular cadence of flight testing on a variety of vehicles, helping researchers rapidly advance these critical systems for missions to the Moon, Mars, and beyond.

"These flight tests directly address some of NASA's highest-ranked technology needs, or shortfalls, ranging from advanced guidance algorithms and terrain-relative navigation to lidar-and optical-based hazard detection and mapping," said Dr. John M. Carson III, STMD technical integration manager for precision landing and based at NASA's Johnson Space Center in Houston.

Since the beginning of this year, STMD has supported flight testing of four precision landing and hazard detection technologies from many sectors, including NASA, universities, and commercial industry. These cutting-edge solutions have flown aboard a suborbital rocket system, a high-speed jet, a helicopter, and a rocket-powered lander testbed. That's four precision landing technologies tested on four different flight vehicles in four months.

"By flight testing these technologies on Earth in spaceflight-relevant trajectories and velocities, we're demonstrating their capabilities and validating them with real data for transitioning technologies from the lab into mission applications," said Dr. Carson. "This work also signals to industry and other partners that these capabilities are ready to push beyond NASA and academia and into the next generation of Moon and Mars landers."

The following NASA-supported flight tests took place between February and May:

Suborbital Rocket Test of Vision-Based Navigation System

Identifying landmarks to calculate accurate navigation solutions is a key function of Draper's Multi-Environment Navigator (DMEN), a vision-based navigation and hazard detection technology designed to improve safety and precision of lunar landings.

Aboard Blue Origin's New Shepard reusable suborbital rocket system, DMEN collected real-world data and validated its algorithms to advance it for use during the delivery of three NASA payloads as part of NASA's Commercial Lunar Payload Services (CLPS) initiative. On Feb. 4, DMEN performed the latest in a series of tests supported by NASA's Flight Opportunities program, which is managed at NASA's Armstrong Flight Research Center in Edwards, California.

During the February flight, which enabled testing at rocket speeds on ascent and descent, DMEN scanned the Earth below, identifying landmarks to calculate an accurate navigation solution. The technology achieved accuracy levels that helped Draper advance it for use in terrain-relative navigation, which is a key element of landing on other planets.

High-Speed Jet Tests of Lidar-Based Navigation

Several highly dynamic maneuvers and flight paths put Psionic's Space Navigation Doppler Lidar (PSNDL) to the test while it collected navigation data at various altitudes, velocities, and orientations.

Psionic licensed NASA's Navigation Doppler Lidar technology developed at Langley Research Center in Hampton, Virginia, and created its own miniaturized system with improved functionality and component redundancies, making it more rugged for spaceflight. In February, PSNDL along with a full navigation sensor suite was mounted aboard an F/A-18 Hornet aircraft and underwent flight testing at NASA Armstrong.

The aircraft followed a variety of flight paths over several days, including a large figure-eight loop and several highly dynamic maneuvers over Death Valley, California. During these flights, PSNDL collected navigation data relevant for lunar and Mars entry and descent.

The high-speed flight tests demonstrated the sensor's accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. These recent tests complemented previous Flight Opportunities-supported testing aboard a lander testbed to advance earlier versions of their PSNDL prototypes.

Helicopter Tests of Real-Time Mapping Lidar

Researchers at NASA's Goddard Space Flight Center in Greenbelt, Maryland, developed a state-of-the-art Hazard Detection Lidar (HDL) sensor system to quickly map the surface from a vehicle descending at high speed to find safe landing sites in challenging locations, such as Europa (one of Jupiter's moons), our own Moon, Mars, and other planetary bodies throughout the solar system. The HDL-scanning lidar generates three-dimensional digital elevation maps in real time, processing approximately 15 million laser measurements and mapping two football fields' worth of terrain in only two seconds.

In mid-March, researchers tested the HDL from a helicopter at NASA's Kennedy Space Center in Florida, with flights over a lunar-like test field with rocks and craters. The HDL collected numerous scans from several different altitudes and view angles to simulate a range of landing scenarios, generating real-time maps. Preliminary reviews of the data show excellent performance of the HDL system.

The HDL is a component of NASA's Safe and Precise Landing - Integrated Capabilities Evolution (SPLICE) technology suite. The SPLICE descent and landing system integrates multiple component technologies, such as avionics, sensors, and algorithms, to enable landing in hard-to-reach areas of high scientific interest. The HDL team is also continuing to test and further improve the sensor for future flight opportunities and commercial applications.

Lander Tests of Powered-Descent Guidance Software Providing pinpoint landing guidance capability with minimum propellant usage, the San Diego State University (SDSU) powered-descent guidance algorithms seek to improve autonomous spacecraft precision landing and hazard avoidance. During a series of flight tests in April and May, supported by NASA's Flight Opportunities program, the university's software was integrated into Astrobotic's Xodiac suborbital rocket-powered lander via hardware developed by Falcon ExoDynamics as part of NASA TechLeap Prize's Nighttime Precision Landing Challenge.

The SDSU algorithms aim to improve landing capabilities by expanding the flexibility and trajectory-shaping ability and enhancing the propellant efficiency of powered-descent guidance systems. They have the potential for infusion into human and robotic missions to the Moon as well as high-mass Mars missions.

By advancing these and other important navigation, precision landing, and hazard detection technologies with frequent flight tests, NASA's Space Technology Mission Directorate is prioritizing safe and successful touchdowns in challenging planetary environments for future space missions.

Related Links
Space Technology Mission Directorate
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MOON DAILY
Why are some rocks on the moon highly magnetic
Boston MA (SPX) May 26, 2025
Where did the moon's magnetism go? Scientists have puzzled over this question for decades, ever since orbiting spacecraft picked up signs of a high magnetic field in lunar surface rocks. The moon itself has no inherent magnetism today. Now, MIT scientists may have solved the mystery. They propose that a combination of an ancient, weak magnetic field and a large, plasma-generating impact may have temporarily created a strong magnetic field, concentrated on the far side of the moon. In a study ... read more

MOON DAILY
Pentagon deploys more U.S. troops to southern border

Ship with aid bound for Gaza sets sail to break blockade

Myanmar junta extends ceasefire again after quake

Hajj disasters: stampedes, infernos and a bloody siege

MOON DAILY
SpaceX launches advanced GPS satellite for Space Force

Satellites Enhance Navigation Safety on the Mersey with Cutting-Edge Tidal Mapping

Sierra Space Reaches Key Milestone in Space Force R-GPS Program

Children as young as five can navigate a 'tiny town'

MOON DAILY
Overlooked cells might explain the human brain's huge storage capacity

Orangutan Communication Reveals Surprising Complexity Once Thought Uniquely Human

Ancient Hands Reveal Diverse Gripping Abilities in Early Hominins

Hormone cycles shape the structure and function of key memory regions in the brain

MOON DAILY
Plants that abandon blooming may face extinction despite short-term gains

Insect Predator Shows Remarkable Tool Use to Trap Prey

Kazakhstan to allow hunting once endangered antelopes

In tune with nature: expert sounds out all of Ireland's bird species

MOON DAILY
After quitting WHO, US urges others to 'consider joining us': Kennedy

Dengue, chikungunya may soon be endemic in Europe: research

White House site blames China for Covid-19 'lab leak'

Pentagon invites back former military fired for refusing COVID-19 vaccines

MOON DAILY
Gay Chinese couple fulfil wedding dream in 'freer' Thailand

SE Asian leaders meet China's Li and Gulf states to bolster ties

Denmark in 'frank' talks with China over backing Russia; Germany says China has 'a responsibility for global peace'

Germany says China has 'a responsibility for global peace'

MOON DAILY
Arrests of Colombian ex-soldiers expose links to Mexican cartels

Blast kills six soldiers in Mexican cartel zone

Trump attends memecoin gala as protesters slam 'crypto corruption'

U.S. blacklists two alleged high-ranking Cartel del Noreste members

MOON DAILY
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.