Medical and Hospital News  
SOLAR SCIENCE
NASA rocket chasing the source of the Sun's hot atmosphere
by Miles Hatfield for GSFC News
Greenbelt MD (SPX) May 18, 2021

EUNIS will launch on a Black Brant IX sounding rocket to an altitude of about 200 miles before parachuting back to Earth for recovery. The EUNIS team expects approximately six minutes of observing time.

After glimpsing faint but widespread super-heated material in the Sun's outer atmosphere, a NASA sounding rocket is going back for more. This time, they're carrying a new instrument optimized to see it across a wider region of the Sun.

The mission, known as Extreme Ultraviolet Normal Incidence Spectrograph, or EUNIS for short, will launch from the White Sands Missile Range in New Mexico. The launch window opens on May 18, 2021.

EUNIS is an instrument suite mounted on a sounding rocket, a type of space vehicle that makes short flights above Earth's atmosphere before falling back to Earth. Getting to space is important, because EUNIS observes the Sun in a range of extreme ultraviolet light that does not penetrate Earth's atmosphere.

For the upcoming flight, the fourth for the EUNIS instrument, the team added a new channel to measure wavelengths between nine and 11 nanometers. (Visible light wavelengths are between 380 and 700 nanometers.) The new wavelength range is attracting attention after an unexpected finding from EUNIS's previous flight in 2013.

"Pardon the pun, but it's a very 'hot' wavelength region to study," said Adrian Daw, space physicist at NASA's Goddard Space Flight Center, in Greenbelt, Maryland, and principal investigator for EUNIS.

During the 2013 flight, the team was scanning an active region - a magnetically complex area on the Sun, often the site of solar flares and sunspots - when they observed a spectral line from iron that had lost 18 of its 26 electrons. To lose that many, it had to be heated to incredibly high temperatures, much higher than the team was expecting.

"It's formed at temperatures between about 14 and 16 million degrees Fahrenheit," said Jeff Brosius, space scientist at Catholic University in Washington, D.C., and member of the EUNIS team. "These ions are typically associated with flares - but not with quiescent active regions like we were observing."

The observations provided fodder for a long-standing debate about how the Sun's outer atmosphere gets so hot. While the Sun's surface simmers at about 10,000 degrees F, its outermost layer, known as the corona, is somehow 300 times hotter despite being farther from the core.

One theory of coronal heating also predicts the super-hot iron they saw. The theory of 'nanoflares' claims that the corona is heated by a slew of tiny magnetic explosions that work in concert to heat the corona. These nanoflares are usually too small to detect, yet should leave behind bursts of extreme heat like the one they saw.

"For me personally, the widespread emission from this highly-ionized iron in an active region 'rocketed' the nanoflare explanation to the top of the list," Brosius said.

For the upcoming flight, the EUNIS instrument suite has been modified to capture even brighter spectral lines from the same ionized iron. It will also capture lines from iron that had lost 17 electrons, which is nearly as hot.

"By observing stronger lines, we hope to detect faint emission from these ions over an even wider area than before," Brosius said.

This new channel is a first for solar science because it's built into an instrument called an imaging spectrometer. Usually, scientists can get precise temperature profiles, called spectra, only by focusing on one specific point of the Sun at a time. But to see the spread of the super-hot iron, the team also needed to see where those temperatures are coming from.

"It's the first time we'll ever have the combination of spectral and spatial information for those wavelengths," Daw said. "Nobody's ever looked at the Sun that way."

Knowing what the temperatures are, while also seeing an image, is helpful for aligning EUNIS's data with those of other missions that are co-observing with it, including NASA's Interface Region Imaging Spectrograph, NASA's Solar Dynamics Observatory, and the Japan Aerospace Exploration Agency's and NASA's Hinode satellite missions.

Like many sounding rocket missions, EUNIS's data will be used to inform and improve other space science missions. NASA's Solar Dynamics Observatory, or SDO, satellite images the Sun in several different bands of wavelengths. Since different wavelengths correspond to different temperatures, the more precise your wavelength measurements can be, the better. EUNIS's measurements will resolve a few specific wavelengths extremely precisely, helping SDO better calibrate its images and giving scientists a better sense of exactly what they're seeing in SDO images.

EUNIS will launch on a Black Brant IX sounding rocket to an altitude of about 200 miles before parachuting back to Earth for recovery. The EUNIS team expects approximately six minutes of observing time.


Related Links
Sounding Rockets at NASA
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
Scientists invent a method for predicting solar radio flux for two years ahead
Moscow, Russia (SPX) May 13, 2021
Scientists at the Skolkovo Institute of Science and Technology (Skoltech) and their colleagues from the University of Graz and the Kanzelhohe Observatory (Austria) and the ESA European Space Operations Centre developed a method and software called RESONANCE to predict the solar radio flux activity for 1-24 months ahead. RESONANCE will serve to improve the specification of satellite orbits, re-entry services, modeling of space debris evolution, and collision avoidance maneuvers. The research results we ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Huge Titanic replica to open as Chinese tourist destination

Iraq's heritage battered by desert sun, rain and state apathy

At least 15 dead after Guinean gold mine landslide

Death toll in Indonesian power plant landslide rises to 10

SOLAR SCIENCE
BDS-3 system facilitates public transportation in east China's Nanchang

Beidou has grown into world-class navigation system

GSA commissions RUAG to study more accurate satellite navigation

EU space regulation ready to take off with the creation of the EUSPA

SOLAR SCIENCE
City of centenarians points the way for China's ageing future

China posts slowest population growth in decades

More than 45,000 people volunteer to kill 12 bison in US national park

Overthinking may be to blame for missed penalty kicks, study says

SOLAR SCIENCE
Bengal tiger found unharmed after week missing in Texas

18 elephants suspected killed by India lightning strike

New genetic data bodes well for California's comeback condors

Chinese hunt for escaped leopard dangles chickens as bait

SOLAR SCIENCE
China donates vaccine doses to Senegal and Bangladesh

China says backs talks on IP waiver for Covid vaccines

Australia calls for empowering WHO after Covid panel

Hong Kong scraps mandatory vaccines for foreign domestic workers

SOLAR SCIENCE
Taiwan warns Jimmy Lai asset freeze signals new Hong Kong risk

Pro-democracy Hong Kong newspaper halts shares after asset freeze

China says US trampling on right of athletes to compete in Winter Games

Meet China's elderly influencers cashing in on the internet

SOLAR SCIENCE
Crew of Chinese boat freed from kidnappers: Nigerian army

SOLAR SCIENCE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.