Medical and Hospital News  
TECH SPACE
NASA rockets study why tech goes haywire near poles
by Miles Hatfield for GSFC News
Greenbelt MD (SPX) Nov 25, 2019

Illustration of the ICI-5 rocket deploying its 12 daughter payloads. Once in space, these additional sensors will help scientists distinguish turbulence from waves, both of which could be the cause of corrupted communication signals.

Each second, 1.5 million tons of solar material shoot off of the Sun and out into space, traveling at hundreds of miles per second. Known as the solar wind, this incessant stream of plasma, or electrified gas, has pelted Earth for more than 4 billion years. Thanks to our planet's magnetic field, it's mostly deflected away. But head far enough north, and you'll find the exception.

"Most of Earth is shielded from the solar wind," said Mark Conde, space physicist as the University of Alaska, Fairbanks. "But right near the poles, in the midday sector, our magnetic field becomes a funnel where the solar wind can get all the way down to the atmosphere."

These funnels, known as the polar cusps, can cause some trouble. The influx of solar wind disturbs the atmosphere, disrupting satellites and radio and GPS signals. Beginning Nov. 25, 2019, three new NASA-supported missions will launch into the northern polar cusp, aiming to improve the technology affected by it.

Shaky Satellites
The three missions are all part of the Grand Challenge Initiative - Cusp, a series of nine sounding rocket missions exploring the polar cusp. Sounding rockets are a type of space vehicle that makes 15-minute flights into space before falling back to Earth. Standing up to 65 feet tall and flying anywhere from 20 to 800 miles high, sounding rockets can be aimed and fired at moving targets with only a few minutes notice. This flexibility and precision make them ideal for capturing the strange phenomena inside the cusp.

Two of the three upcoming missions will study the same anomaly: a patch of atmosphere inside the cusp notably denser than its surroundings. It was discovered in 2004, when scientists noticed that part of the atmosphere inside the cusp was about 1.5 times heavier than expected.

"A little extra mass 200 miles up might seem like no big deal," said Conde, the principal investigator for the Cusp Region Experiment-2, or CREX-2, mission. "But the pressure change associated with this increased mass density, if it occurred at ground level, would cause a continuous hurricane stronger than anything seen in meteorological records."

This additional mass creates problems for spacecraft flying through it, like the many satellites that follow a polar orbit. Passing through the dense patch can shake up their trajectories, making close encounters with other spacecraft or orbital debris riskier than they would otherwise be.

"A small change of a few hundred meters can make the difference between having to do an evasive maneuver, or not," Conde said.

Both CREX-2 and Cusp Heating Investigation, or CHI mission, led by Miguel Larsen of Clemson University in South Carolina, will study this heavy patch of atmosphere to better predict its effects on satellites passing through. "Each mission has its own strengths, but ideally, they'll be launched together," Larsen said.

Corrupted Communication
It's not just spacecraft that behave unpredictably near the cusp - so do the GPS and communications signals they transmit. The culprit, in many cases, is atmospheric turbulence.

"Turbulence is one of the really hard remaining questions in classical physics," said Joran Moen, space physicist at the University of Oslo. "We don't really know what it is because we have no direct measurements yet."

Moen, who is leading the Investigation of Cusp Irregularities-5 or ICI-5 mission, likens turbulence to the swirling eddies that form when rivers rush around rocks. When the atmosphere grows turbulent, GPS and communication signals passing through it can become garbled, sending unreliable signals to the planes and ships that depend on them.

Moen hopes to make the first measurements to distinguish true turbulence from electric waves that can also disrupt communication signals. Though both processes have similar effects on GPS, figuring out which phenomenon drives these disturbances is critical to predicting them.

"The motivation is to increase the integrity of the GPS signals," Moen said. "But we need to know the driver to forecast when and where these disturbances will occur."

Waiting on Weather
The extreme North provides a pristine locale for examining physics much harder to study elsewhere. The tiny arctic town on Svalbard, the Norwegian archipelago from which the ICI-5 and CHI rockets will launch, has a small population and strict restrictions on the use of radio or Wi-Fi, creating an ideal laboratory environment for science.

"Turbulence occurs in many places, but it's better to go to this laboratory that is not contaminated by other processes," Moen said. "The 'cusp laboratory' - that's Svalbard."

Ideally, the CHI rocket would launch from Svalbard at nearly the same time that CREX-2 launches from Andenes, Norway. The ICI-5 rocket, on a second launcher in Svalbard, would fly soon after. But the timing can be tricky: Andenes is 650 miles south of Svalbard, and can experience different weather. "It's not a requirement, but launching together would certainly multiply the scientific returns of the missions," Conde said.

Keeping a constant eye on the weather, waiting for the right moment to launch, is a key part of launching rockets - even part of the draw.

"It really is an all-consuming thing," Conde said. "All you do when you're out there is watch conditions and talk about the rocket and decide what you would do."


Related Links
Grand Challenge Initiative - Cusp,
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity
Seville, Spain (SPX) Oct 28, 2019
University of Seville researchers, led by the professor Francisco Luis Cumbrera, together with colleagues from the University of Zaragoza and CSIC, have found a procedure for producing the phase B6C of boron carbide. This phase had been described from a theoretical point of view, but obtaining it and describing its character were a task that remained unfulfilled. This scientific-technological advance will make it possible to provide a cheap, ultra-resistant material for the design of planes, cars ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA data helps assess landslide risk in Rohingya refugee camps

Japan: safe to dump water from Fukushima nuclear disaster

Russia repatriates around 30 toddlers from Iraq

What felled the great Assyrian Empire? A Yale professor weighs in

TECH SPACE
Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

TECH SPACE
Skull study suggests pre-humans weren't as bright as modern apes

Brain enlightens the origin of human hand's skill

Extinct giant ape directly linked to the living orangutan

Fossil suggests apes, old world monkeys moved in opposite directions from shared ancestor

TECH SPACE
Can plants tell us something about longevity?

China 'medicine' demand threatens world donkey population: report

Chemists map an artificial molecular self-assembly pathway with complexities of life

A third of Africa's tropical flora threatened with extinction: study

TECH SPACE
Scientists close in on malaria vaccine

Novel marine bacteria could yield new antibiotics

Pig infected with African swine fever washes up in Taiwan

Two treated for deadly pneumonic plague in Beijing

TECH SPACE
Hong Kong rights bill clears US Congress, heads to Trump

'Barbarians': Inside Chinese media coverage of Hong Kong

Former UK consulate worker says Chinese police tortured him

China releases video of UK consulate worker's confession

TECH SPACE
Four sailors kidnapped by suspected pirates off Togo: navy

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.