Subscribe free to our newsletters via your
. Medical and Hospital News .




STELLAR CHEMISTRY
NASA's Fermi Makes First Gamma-ray Study of a Gravitational Lens
by Lynn Chandler for Goddard Space Flight Center
Greenbelt MD (SPX) Jan 07, 2014


This https://www.youtube.com/watch?v=hAH_0UhRnUo illustrates the components of a gravitational lens system known as B0218+357. Different sight lines to a background blazar result in two images that show outbursts at slightly different times. NASA's Fermi made the first gamma-ray measurements of this delay in a lens system. Image Credit: NASA's Goddard Space Flight Center.

An international team of astronomers, using NASA's Fermi observatory, has made the first-ever gamma-ray measurements of a gravitational lens, a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify light from a more distant source.

This accomplishment opens new avenues for research, including a novel way to probe emission regions near supermassive black holes. It may even be possible to find other gravitational lenses with data from the Fermi Gamma-ray Space Telescope.

"We began thinking about the possibility of making this observation a couple of years after Fermi launched, and all of the pieces finally came together in late 2012," said Teddy Cheung, lead scientist for the finding and an astrophysicist at the Naval Research Laboratory in Washington.

In September 2012, Fermi's Large Area Telescope (LAT) detected a series of bright gamma-ray flares from a source known as B0218+357, located 4.35 billion light-years from Earth in the direction of a constellation called Triangulum. These powerful flares, in a known gravitational lens system, provided the key to making the lens measurement.

Astronomers classify B0218+357 as a blazar -- a type of active galaxy noted for its intense emissions and unpredictable behavior. At the blazar's heart is a supersized black hole with a mass millions to billions of times that of the sun. As matter spirals toward the black hole, some of it blasts outward as jets of particles traveling near the speed of light in opposite directions.

The extreme brightness and variability of blazars result from a chance orientation that brings one jet almost directly in line with Earth. Astronomers effectively look down the barrel of the jet, which greatly enhances its apparent emission.

Long before light from B0218+357 reaches us, it passes directly through a face-on spiral galaxy -- one very much like our own -- about 4 billion light-years away.

The galaxy's gravity bends the light into different paths, so astronomers see the background blazar as dual images. With just a third of an arcsecond (less than 0.0001 degree) between them, the B0218+357 images hold the record for the smallest separation of any lensed system known.

While radio and optical telescopes can resolve and monitor the individual blazar images, Fermi's LAT cannot. Instead, the Fermi team exploited a "delayed playback" effect.

"One light path is slightly longer than the other, so when we detect flares in one image we can try to catch them days later when they replay in the other image," said team member Jeff Scargle, an astrophysicist at NASA's Ames Research Center in Moffett Field, Calif.

In September 2012, when the blazar's flaring activity made it the brightest gamma-ray source outside of our own galaxy, Cheung realized it was a golden opportunity. He was granted a week of LAT target-of-opportunity observing time, from Sept. 24 to Oct. 1, to hunt for delayed flares.

At the American Astronomical Society meeting in National Harbor, Md., Cheung said the team had identified three episodes of flares showing playback delays of 11.46 days, with the strongest evidence found in a sequence of flares captured during the week-long LAT observations.

Intriguingly, the gamma-ray delay is about a day longer than radio observations report for this system. And while the flares and their playback show similar gamma-ray brightness, in radio wavelengths one blazar image is about four times brighter than the other.

Astronomers don't think the gamma rays arise from the same regions as the radio waves, so these emissions likely take slightly different paths, with correspondingly different delays and amplifications, as they travel through the lens.

"Over the course of a day, one of these flares can brighten the blazar by 10 times in gamma rays but only 10 percent in visible light and radio, which tells us that the region emitting gamma rays is very small compared to those emitting at lower energies," said team member Stefan Larsson, an astrophysicist at Stockholm University in Sweden.

As a result, the gravity of small concentrations of matter in the lensing galaxy may deflect and amplify gamma rays more significantly than lower-energy light. Disentangling these so-called microlensing effects poses a challenge to taking further advantage of high-energy lens observations.

The scientists say that comparing radio and gamma-ray observations of additional lens systems could help provide new insights into the workings of powerful black-hole jets and establish new constraints on important cosmological quantities like the Hubble constant, which describes the universe's rate of expansion.

The most exciting result, the team said, would be the LAT's detection of a playback delay in a flaring gamma-ray source not yet identified as a gravitational lens in other wavelengths.

A paper describing the research will appear in a future edition of The Astrophysical Journal Letters. Paper: "Fermi-LAT Detection of Gravitational Lens Delayed Gamma-ray Flares from Blazar B0218+357"

.


Related Links
Fermi at NASA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Monster gamma-ray burst in our cosmic neighborhood
Copenhagen, Denmark (SPX) Nov 25, 2013
Gamma-ray bursts are violent bursts of gamma radiation associated with exploding massive stars. For the first time ever, researchers from the Niels Bohr Institute, among others, have observed an unusually powerful gamma-ray burst in the relatively nearby universe - a monster gamma-ray burst. The results are published in the scientific journal, Science. When astronomers observe gamma-ray bu ... read more


STELLAR CHEMISTRY
Four arrested over Italy quake contract bribes

Philippine inflation jumps following Haiyan

'Cramped' houses row over Philippine typhoon survivors

System of phone alerts could warn of extreme weather in India

STELLAR CHEMISTRY
Northrop Grumman and Trex Enterprises to Introduce Celestial Navigation to Soldier Precision Targeting Laser Systems

China to upgrade homegrown GPS to improve accuracy

Beidou to cover world by 2020 with 30 satellites

Obama bans construction of GLONASS stations in US without Pentagon's approval

STELLAR CHEMISTRY
Turning Off the "Aging Genes"

Money Talks When Ancient Antioch Meets Google Earth

Reading a good book may make permanent changes to your brain

Finnish research team reveals how emotions are mapped in the body

STELLAR CHEMISTRY
Niger's giraffe population on the rise again

Hong Kong mulls following China to destroy ivory stockpile

Worker Wasps Grow Visual Brains, Queens Stay in the Dark

Chinese man detained after dead tiger found in SUV

STELLAR CHEMISTRY
Hong Kong reports first H7N9 case of the year

Canada reports first H5N1 bird flu death in North America

H1N1 flu claims five lives in Canada's Alberta province

Hundreds monitored in Taiwan after bird flu case

STELLAR CHEMISTRY
Chinese Good Samaritan kills himself over accusations

China demolishes landmark inn once hailed as symbol of change

Chinese state TV eyes Tiananmen rocker for gala: manager

14 killed in China mosque stampede: Xinhua

STELLAR CHEMISTRY
Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

Mexican military seeks to oust cartel from port

Spain jails six Somalis for piracy

STELLAR CHEMISTRY
China to allow fully private banks this year

China inflation rate 2.6% in 2013

Singapore's OCBC bank in talks to buy Hong Kong lender

Walker's World: Germans turn against EU




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement